STANISLAUS COUNTY PLANNING COMMISSION

April 7, 2016

STAFF REPORT

REZONE AND PARCEL MAP APPLICATION NO. PLN2015-0027 VALLEY BMW/KIA

REQUEST: TO REZONE A 9.0± ACRE PARCEL FROM A-2-10 TO PLANNED DEVELOPMENT

AND SUBDIVIDE THE PROPERTY INTO FIVE PARCELS FOR THE DEVELOPMENT OF TWO AUTO DEALERSHIPS AND THE FUTURE

DEVELOPMENT OF SIMILAR AUTO RELATED USES.

APPLICATION INFORMATION

Applicant/ Property Owner:

Agent:

B.E. Fitzpatrick Development, Inc.

Dennis Wilson, Horizon Consulting

Location: 4761 McHenry Avenue (State Route 108),

between Kiernan Avenue and Bangs Avenue,

north of the City of Modesto

05-03-09

Supervisorial District: Four (Supervisor Monteith)

Assessor's Parcel: 046-010-020 Referrals: See Exhibit J

Environmental Review Referrals

Area of Parcel(s):

9.0± Acres (Existing gross acreage

9.0± Acres (Existing gross acreage)
Proposed Parcel 1: 2.31± acres
Proposed Parcel 2: 3.62± acres
Proposed Parcel 3: 0.85± acres
Proposed Parcel 4: 0.85± acres
Proposed Parcel 5: 0.75± acres

Total Proposed Parcel 8.38± Acres (Net)

Water Supply: City of Modesto

Sewage Disposal: Septic (Construction of dry sewer line for

future connection to public sewer)

Existing Zoning: A-2-10 (General Agriculture)

General Plan Designation: Planned Industrial/Planned Development

Sphere of Influence: City of Modesto Community Plan Designation: Not Applicable Williamson Act Contract No.: Not Applicable

Environmental Review: Mitigated Negative Declaration

Present Land Use: Vacant

Surrounding Land Use: Automotive sales to the north and south, to

the west is light industrial development and to the east are State Route 108 and auto sales.

RECOMMENDATION

Section, Township, Range:

Staff recommends the Planning Commission recommend that the Board of Supervisors approve this request based on the discussion below and on the whole of the record provided to the County. If the Planning Commission decides to recommend approval of this project, Exhibit A provides an overview of all the findings required for project approval.

PROJECT DESCRIPTION

The project is a request to rezone a 9.0± acre parcel from A-2-10 (General Agriculture) to Planned Development (P-D) and to subdivide the property into five parcels, also providing for the extension of Spyres Way north. Development will take place in two phases with phase 1 commencing development upon project approval and phase 2 to be completed within 15 years of project approval.

Phase 1 will include the construction of a 30,241 square-foot commercial building for an auto dealership. The dealership will feature an office area, sales area, storage and service department and up to 30 employees during a maximum shift. The office and sales portion of the building will be constructed with a stucco covered structural steel frame with glass, while the service department will consist of concrete masonry block material. The building will be approximately 30 feet in height. The auto dealership will operate 7 days a week with hours ranging from 7:00 a.m. to 9:00 p.m. Monday through Saturday and 9:00 a.m. to 7:00 p.m. on Sundays. Phase 1 includes the completion of the proposed parcel map. The phase 1 dealership will utilize two access points, one along McHenry Avenue and the second on the extended Spyres Way.

Spyres Way will be extended north through the existing property to stub out into the northern parcel. A City of Modesto water line will also be extended to serve the project site and any other future development. At this time, the proposed development will dispose of effluent waste through on-site septic facilities, but will construct a dry sewer system to connect any future extension of City of Modesto sewer lines. Lastly, any stormwater generated from this development will be retained on-site utilizing an underground french drain system.

As mentioned previously, phase 2 will start development approximately on or before 2031 and will consist of an approximately 16,000 square-foot commercial building for a future auto dealership. Similar to phase 1 development, the proposed building will feature office, sales, storage and service areas. The future dealership will employ 20 people during a maximum shift and will offer the same hours of operation as the phase 1 dealership. Phase 2 will also utilize two access points, similar to phase 1 along McHenry Avenue and the extended Spyres Way. Lastly, proposed Parcels 1 and 2 and the adjacent parcel to the south of proposed Parcel 2 will feature a north-south reciprocal access driveway on the easterly portion of the site (See Exhibit B – Maps, Site Plan and Elevations).

If the rezone is approved, the site will be subdivided into 5 new parcels. The proposed development will take place on proposed Parcel 2 (during phase 1) and proposed Parcel 1 (during phase 2). The three proposed parcels west of the Spyres Way extension will be developed for auto related uses similar with light industrial practices. There is no plan to develop these three parcels at this time. However, when the remaining parcels do develop, they will be subject to development standards consistent with the Planned Industrial zoning district.

SITE DESCRIPTION

The site is located at 4761 McHenry Avenue (State Route 108), between Claribel Road and Bangs Avenue, north of the City of Modesto and lying within the City's LAFCO adopted Sphere of Influence (See Exhibit B – *Maps, Site Plan and Elevations*). The project site is currently vacant having two driveways accessing McHenry Avenue. At one time, the site had been developed with a single-family dwelling and legal nonconforming apartments. However, all buildings on the site have since been removed.

Surrounding land uses consist of similar auto sales operations to the north, south and east. Lowintensity industrial and commercial businesses have been developed to the west. The vast majority

of parcels that surround the site have a General Plan Designation and zoning designation of Planned Development and Planned Industrial or a combination thereof. This site is one of the last remaining properties zoned A-2 (General Agriculture) in the area.

ISSUES

The following section is a discussion of issues identified during project review. Staff has evaluated these issues and provides the following comments:

Modesto Irrigation District

Currently, the site plans, as well as the proposed parcel map, identify Modesto Irrigation District (MID) infrastructure that exists on the property. During the environmental review period, a comment response was received from MID identifying the infrastructure as an abandoned concrete pipeline. The District is requesting that if the development will impact or alter the abandoned-in-place pipeline, then the applicant remove the pipeline infrastructure located on site and plug the remaining portion of the pipeline to the north. A development standard has been added to the project to address the District's comments.

Additionally, the proposed development will receive electrical services from MID. The District further requested that construction plans be submitted for review. Because the proposed development will utilize electric facilities, the District is also requiring the creation of additional easements for continued maintenance access. Development standards have been added to the project to address these comments as well.

Local Agency Formation Commission (LAFCO)

As part of the proposed project development, the applicant will extend and connect to an existing City of Modesto water line as well as install a dry sewer line for when City sewer services are extended. During the environmental review period, a comment letter received from the City of Modesto affirmed that the City will permit a connection to their water main and ultimately serve the site with water. However, the site is outside the City's water service boundaries and is subject to LAFCO approval for utility service outside the City's service area. Through the environmental review period, LAFCO did supply a comment letter requiring an Out-of-Boundary Service Application be submitted. The applicant has already submitted the application, but a development standard has been placed on the project to ensure the requirement is met.

GENERAL PLAN CONSISTENCY

The site currently has two General Plan Designations, Planned Development and Planned Industrial. The Planned Development portion lies on the eastern portion of the property, specifically 450 feet from the centerline of McHenry Avenue and Planned Industrial for the remaining westerly portion of the site. While this may be considered irregular for most parts of the County, select parcels along the North McHenry Avenue corridor have similar split General Plan Designations. However, because the proposed project must be consistent with the General Plan, it becomes appropriate to evaluate both designations.

In 1974, the Stanislaus County Planning Commission adopted a resolution designating the upper McHenry Avenue property frontages (approximately 450 feet from the centerline of McHenry Avenue) as "Planned Development" on the General Plan. In 1987, the Planning Commission further adopted Resolution No. 87-1 to set policies regarding the review and approval of Planned Developments in the area. Staff believes that the proposed project is consistent with the adopted resolution (See Exhibit F – General Plan Resolution No. 87-1).

According to the Stanislaus General Plan Designations, the intent of Planned Industrial is to provide locations for light industrial development, while Planned Development is intended for lands which, because of demonstrably unique characteristics, may be suitable for a variety of uses without detrimental effect on other property. The appropriate zoning to be prescribed for the Planned Industrial Designation varies from General Agriculture to Industrial or Business Park related Planned Developments. Appropriate zoning for Planned Development is determined by the County on an individual basis, depending upon the nature and location of the proposed development.

As stated earlier, the proposed development will consist of two auto dealerships on McHenry Avenue, while the remaining parcels west of Spyres Way will consist of light industrial or auto related uses. Staff believes that the auto dealerships being located at the easterly portion of the site located within the Planned Development section and the remaining portion of the site as Planned Industrial will be consistent with their General Plan Designations. The same can be said for the proposed development west of the Spyres Way extension, which will be permitted for light industrial uses.

The site is located within the City of Modesto's Sphere of Influence. The County's General Plan Policy requires that any development taking place within a City's Sphere of Influence must be consistent with that City's General Plan. As part of the environmental review, the City of Modesto has supported the proposed development and has included development standards regarding the utilities, landscaping and access. Any future development will also be subject to the City of Modesto standards.

ZONING & SUBDIVISION ORDINANCE CONSISTENCY

Zoning districts are required to be consistent with the General Plan. The site is currently zoned A-2-10 (General Agriculture), which is consistent with its current General Plan Designations of Planned Development and Planned Industrial. However, for the proposed uses to take place, a rezoning of the entire parcel to a Planned Development would be the most appropriate measure. The proposed uses of two auto dealerships and auto related uses would be consistent within a Planned Development zoning district. The development of phase 2 as well as the westerly parcels will be required to meet City of Modesto standards. A development standard has been added to ensure consistency to the City of Modesto development standards.

If the proposed rezone to Planned Development is approved, the applicant is also requesting to subdivide the parcel into five new parcels. Normally, State law and local ordinance would require a tentative subdivision map to be filed due to the number of parcels being created. However, an exclusion is allowed by both authorities to allow a parcel map creating five or more parcels to be filed in lieu of a tentative map if the land has access to a county maintained road and is zoned for commercial or industrial development. The development will extend Spyres Way, a County maintained road, and upon approval will be zoned for commercial activities. Therefore, staff believes the proposed project will be consistent with the State law and the County's Subdivision Ordinance.

ENVIRONMENTAL REVIEW

Pursuant to the California Environmental Quality Act (CEQA), the proposed project was circulated to all interested parties and responsible agencies for review and comment and no significant issues were raised. (See Exhibit J - *Environmental Review Referrals*.) A Mitigated Negative Declaration has been prepared for approval prior to action on the rezone, as the project will not have a significant effect on the environment. (See Exhibit H - *Mitigated Negative Declaration*.) Development Standards reflecting referral responses have been placed on the project. (See Exhibit C - *Development Standards*.)

Stanislaus County's Department of Public Works and the State of California Department of Transportation (CalTrans) reviewed this project through both stages of the environmental review. Initially, CalTrans responded that the project would need to prepare a traffic impact study to determine near term and long term impacts to State facilities. After further consideration, CalTrans and the County's Public Works Department agreed that an existing traffic impact study that was performed during the adjacent parcel's development represents an accurate assessment of traffic impacts and mitigation measures for current conditions. (See Exhibit E – *Site Traffic Impact Analysis for Valley Lexus.*) Therefore, this project will be subject to the fair share contribution identified in the existing traffic impact study, to be collected at the time of a building permit issuance. (See Exhibit I – *Mitigation Monitoring Plan.*) The applicant has agreed to these mitigation measures.

Note: Pursuant to California Fish and Game Code Section 711.4, all project applicants subject to the California Environmental Quality Act (CEQA) shall pay a filing fee for each project; therefore, the applicant will further be required to pay **\$2,267.25** for the California Department of Fish and Wildlife (formerly the Department of Fish and Game) and the Clerk Recorder filing fees. The attached Development Standards ensure that this will occur.

Contact Person: Jeremy Ballard, Assistant Planner, (209) 525-6330

Attachments:

Exhibit A - Findings and Actions Required for Project Approval

Exhibit B - Maps, Site Plan and Elevations

Exhibit C - Development Standards

Exhibit D - Permitted Uses/Development Schedule

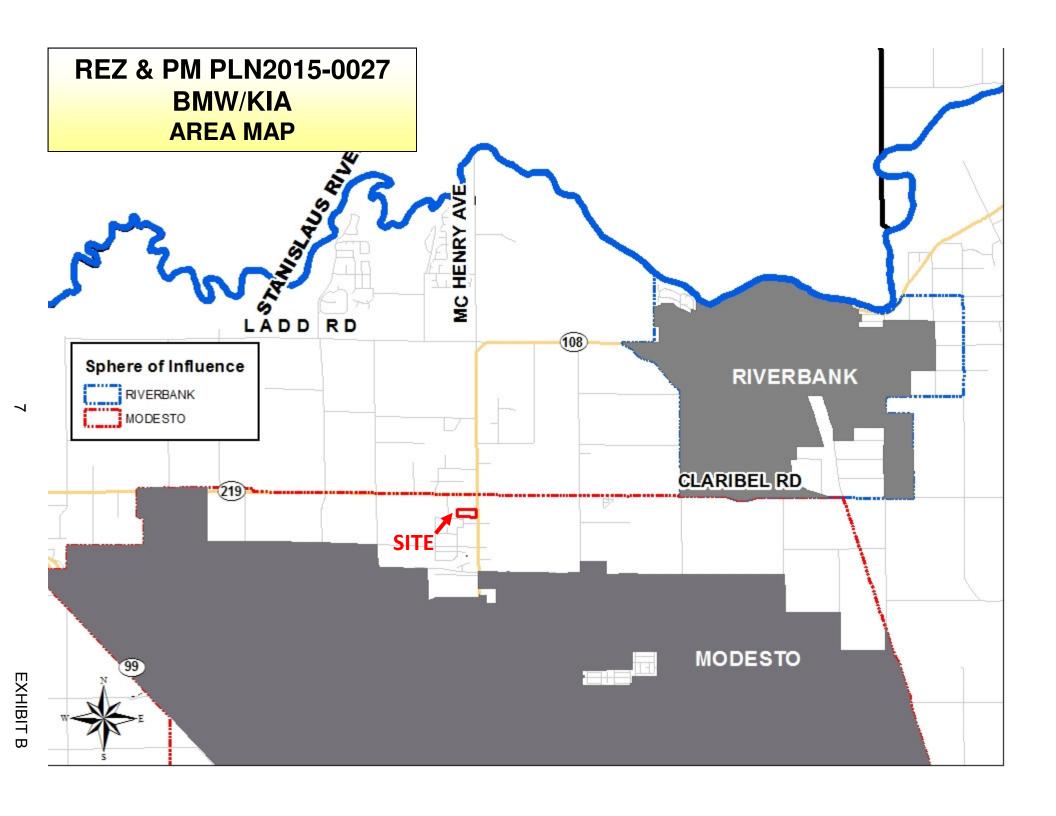
Exhibit E - Site Traffic Impact Analysis for Valley Lexus, dated November 29, 2006

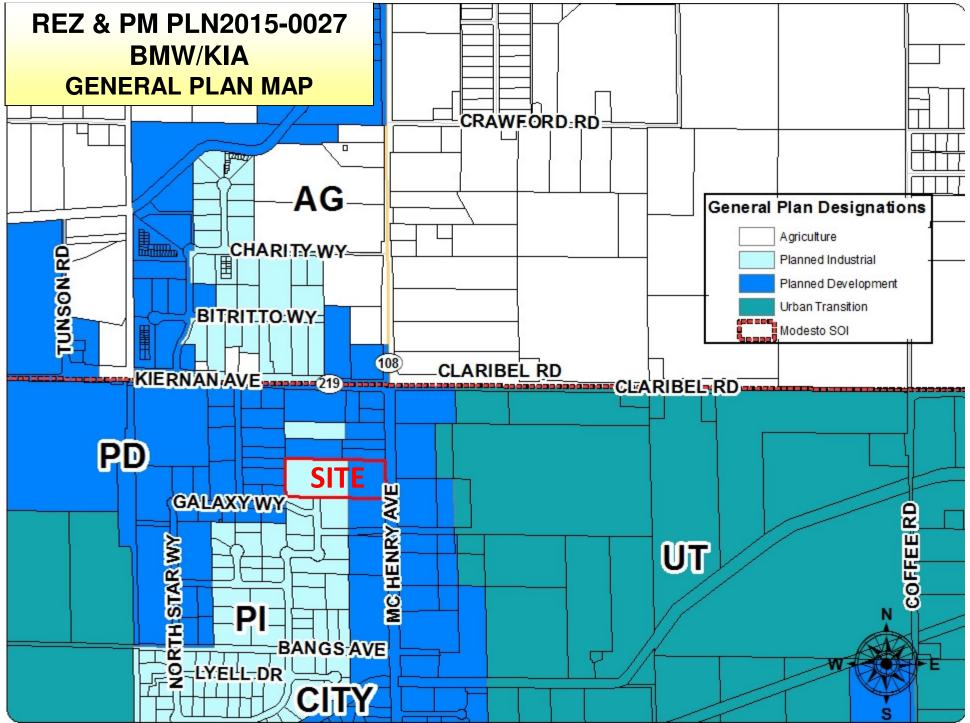
Exhibit F - General Plan Resolution No. 87-1

Exhibit G - Initial Study

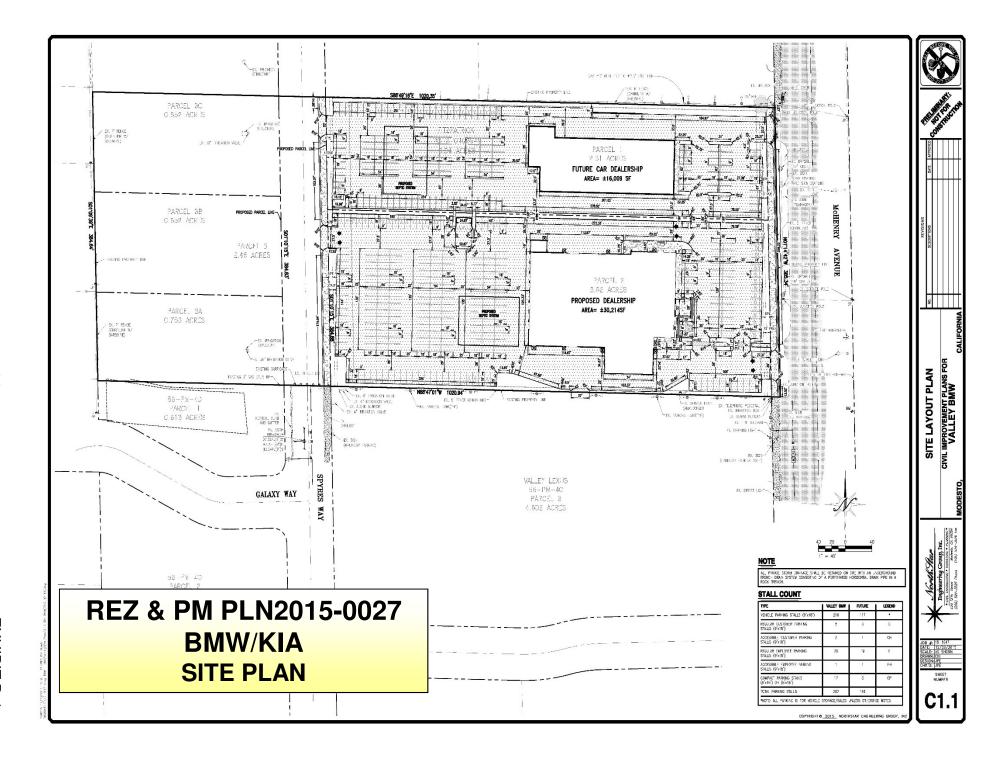
Exhibit H - Mitigated Negative Declaration
Exhibit I - Mitigation Monitoring Plan
Exhibit J - Environmental Review Referral

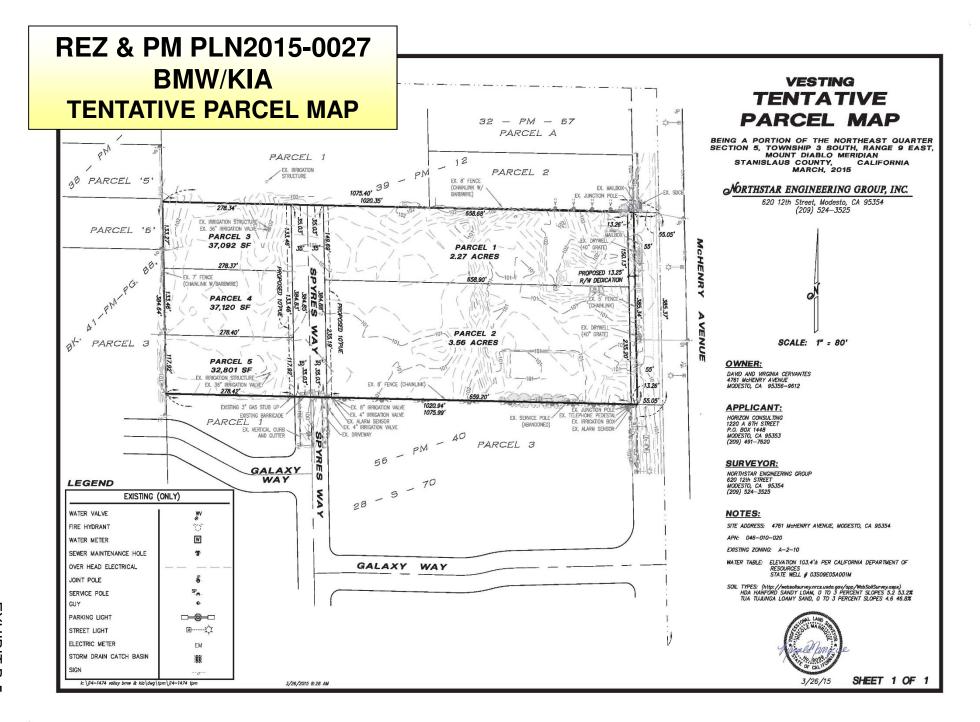
L'PLANNING\STAFF REPORTS\REZ\2015\REZ & PM PLN2015-0027 - VALLEY BMW - KIA\PLANNING COMMISSION\APRIL 7, 2015\STAFF REPORT\FINAL SR.DOC

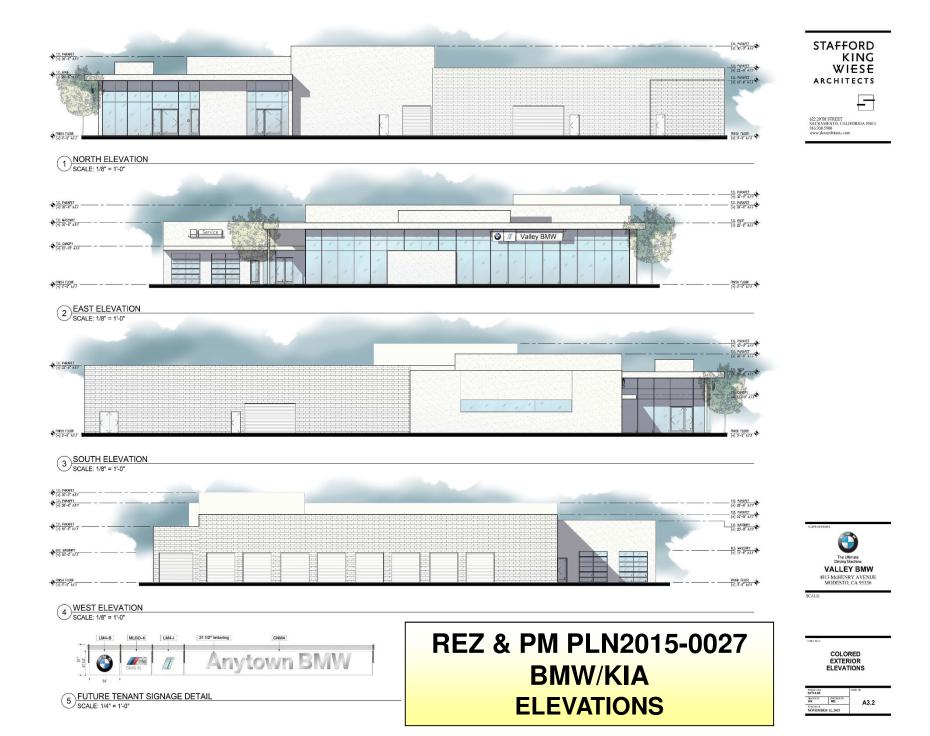

Exhibit A


Findings and Actions Required for Project Approval


- 1. Adopt the Mitigated Negative Declaration pursuant to CEQA Guidelines Section 15074(b), by finding that on the basis of the whole record, including the Initial Study and any comments received, that there is no substantial evidence the project will have a significant effect on the environment and that the Mitigated Negative Declaration reflects Stanislaus County's independent judgment and analysis.
- 2. Order the filing of a Notice of Determination with the Stanislaus County Clerk Recorder pursuant to Public Resources Code Section 21152 and CEQA Guidelines Section 15075;
- 3. Find that the proposed Planned Development zoning is consistent with the Planned Industrial and Planned Development General Plan designation;


4. Find that:


- (a) The proposed map is consistent with the applicable general and community plans as specified in Section 65451;
- (b) The design or improvement of the proposed subdivision is consistent with applicable general and specific plans;
- (c) The site is physically suitable for the type of development;
- (d) The site is physically suitable for the proposed density of development;
- (e) The design of the subdivision or the proposed improvements are not likely to cause substantial environmental damage or substantially and avoidably injure fish or wildlife or their habitat:
- (f) The design of the subdivision or type of improvements are not likely to cause serious public health problems;
- (g) The design of the subdivision or the type of improvements will not conflict with easements, acquired by the public at large, for access through or use of, property within the proposed subdivision. In this connection, the governing body may approve a map if it finds that alternate easements, for access or for use, will be provided and that these will be substantially equivalent to ones previously acquired by the public.
- 5. Find that the project will increase activities in and around the project area, and increase demands for roads and services, thereby requiring dedication and improvements; and
- 6. Recommend that the Board of Supervisors approve Rezone & Parcel Map Application No. PLN2015-0027 Valley BMW/KIA subject to the attached Development Standards.



NOTE: Approval of this application is valid only if the following conditions are met. This permit shall expire unless activated within 18 months of the date of approval. In order to activate the permit, it must be signed by the applicant and one of the following actions must occur: (a) a valid building permit must be obtained to construct the necessary structures and appurtenances; or, (b) the property must be used for the purpose for which the permit is granted. (Stanislaus County Ordinance 21.104.030)

DEVELOPMENT STANDARDS

REZONE AND PARCEL MAP APPLICATION NO. PLN2015-0027 VALLEY BMW/KIA

Department of Planning and Community Development

- 1. Use(s) shall be conducted as described in the application, supporting information (including the site plan) and permitted uses as approved by the Planning Commission and/or Board of Supervisors and in accordance with other laws and ordinances.
- 2. Pursuant to Section 711.4 of the California Fish and Game Code (effective January 1, 2016), the applicant is required to pay a California Department of Fish and Wildlife (formerly the Department of Fish and Game) fee at the time of filing a "Notice of Determination." Within five (5) days of approval of this project by the Planning Commission or Board of Supervisors, the applicant shall submit to the Department of Planning and Community Development a check for \$2,267.25, made payable to Stanislaus County, for the payment of California Department of Fish and Wildlife and Clerk Recorder filing fees.
 - Pursuant to Section 711.4 (e) (3) of the California Fish and Game Code, no project shall be operative, vested, or final, nor shall local government permits for the project be valid, until the filing fees required pursuant to this section are paid.
- 3. Developer shall pay all Public Facilities Impact Fees and Fire Facilities Fees as adopted by Resolution of the Board of Supervisors. The fees shall be payable at the time of issuance of a building permit for any construction in the development project and shall be based on the rates in effect at the time of building permit issuance.
- 4. The applicant/owner is required to defend, indemnify, or hold harmless the County, its officers, and employees from any claim, action, or proceedings against the County to set aside the approval of the project which is brought within the applicable statute of limitations. The County shall promptly notify the applicant of any claim, action, or proceeding to set aside the approval and shall cooperate fully in the defense.
- Pursuant to Section 404 of the Clean Water Act, prior to construction, the developer shall be responsible for contacting the US Army Corps of Engineers to determine if any "wetlands," "waters of the United States," or other areas under the jurisdiction of the Corps of Engineers are present on the project site, and shall be responsible for obtaining all appropriate permits or authorizations from the Corps, including all necessary water quality certifications, if necessary.

14 EXHIBIT C

DRAFT

- 6. Any construction resulting from this project shall comply with standardized dust controls adopted by the San Joaquin Valley Air Pollution Control District (SJVAPCD) and may be subject to additional regulations/permits, as determined by the SJVAPCD.
- 7. Pursuant to Sections 1600 and 1603 of the California Fish and Game Code, prior to construction, the developer shall be responsible for contacting the California Department of Fish and Game and shall be responsible for obtaining all appropriate stream-bed alteration agreements, permits, or authorizations, if necessary.
- 8. The Department of Planning and Community Development shall record a Notice of Administrative Conditions and Restrictions with the County Recorder's Office within 30 days of project approval. The Notice includes: Conditions of Approval/Development Standards and Schedule; any adopted Mitigation Measures; and a project area map.
- 9. Pursuant to the federal and state Endangered Species Acts, prior to construction, the developer shall be responsible for contacting the US Fish and Wildlife Service and California Department of Fish and Game to determine if any special status plant or animal species are present on the project site, and shall be responsible for obtaining all appropriate permits or authorizations from these agencies, if necessary.
- 10. Should any archeological or human remains be discovered during development, work shall be immediately halted within 150 feet of the find until it can be evaluated by a qualified archaeologist. If the find is determined to be historically or culturally significant, appropriate mitigation measures to protect and preserve the resource shall be formulated and implemented. The Central California Information Center shall be notified if the find is deemed historically or culturally significant.
- 11. The recorded parcel map shall contain the following statement:
 - "All persons purchasing lots within the boundaries of this approved map should be prepared to accept the inconveniences associated with the agricultural operations, such as noise, odors, flies, dust, or fumes. Stanislaus County has determined that such inconveniences shall not be considered to be a nuisance if agricultural operations are consistent with accepted customs and standards."
- 12. Each building permit shall be subject to review and approval by the City of Modesto for compliance with all City development standards prior to issuance.
- 13. A valid Stanislaus County business license shall be maintained for any business operating for each parcel.

Department of Public Works

- 14. The recorded parcel map shall be prepared by a licensed land surveyor or a registered civil engineer licensed to practice land surveying.
- 15. All structures not shown on the tentative parcel map shall be removed prior to the parcel map being recorded.
- 16. The new parcels shall be surveyed and fully monumented prior to the recording of the final map.

- 17. Road right-of-way shall be deeded to Stanislaus County to provide for:
 - a. 55 feet of right-of-way west of the centerline of Mc Henry Avenue, or as required to comply with Caltrans requirements for State Route 108 along the frontages of Parcel "1" and "2":
 - b. 70 feet of right-of-way for the new road extensions of Galaxy Way and Spyres Way as shown on the revised tentative parcel map;
- 18. All new utilities shall be underground and located in public utility easements. A 10-foot wide public utility easement (P.U.E.) shall be located adjacent to all road rights-of-way. The P.U.E. shall be shown on the final parcel map.
- 19. An Encroachment Permit shall be obtained for any work done in Stanislaus County road right-of-way.
- 20. Three copies of off-site improvement plans that are consistent with the City of Modesto Standards (Spyres Way) and Caltrans standards (McHenry Avenue/SR 108) shall be submitted and approved by Stanislaus County Public Works prior to the issuance of any building permit associated with this project.
- 21. Prior to final inspection or occupancy of any structure, street improvements shall be installed that are consistent with the City of Modesto standards (Spyres Way) and Caltrans standards (McHenry Avenue/SR 108). This includes acceptance of the public road right-of-way by the Stanislaus County Board of Supervisors. This shall include the extension of Spyres Way as shown on the vesting tentative parcel map. The improvements shall include but not limited to street lights, curb, gutter, and sidewalk, storm drainage, driveways, matching pavement and handicap ramps. Improvement plans shall be submitted to Public Works Department for review and approval.
- 22. All driveway widths and locations shall be approved by Stanislaus County Public Works on Spyres Way and by Caltrans on McHenry Avenue/SR 108.
- 23. All existing irrigation lines within the project site to be subdivided shall be removed or relocated into easements along lot lines. The irrigation lines shall be reinforced at road crossings and driveways. All irrigation lines or structures which are to be abandoned shall be removed. All work shall be done in accordance with the requirement of the Department of Public Works and the Modesto Irrigation District.
- 24. A grading and drainage plan for the project site shall be submitted with the grading or building permit. Public Works will review and approve the drainage calculations. The grading and drainage plan shall include the following information:
 - Drainage calculations shall be prepared as per the Stanislaus County Standards and Specifications that are current at the time the permit is issued.
 - The plan shall contain enough information to verify that all runoff will be kept from going onto adjacent properties and Stanislaus County road right-of-way.
 - The grading and drainage plan shall comply with the National Pollutant Discharge Elimination System (NPDES) General Permit and Stanislaus County storm water treatment and quality standards.

- The grading, drainage, and associated work shall be accepted by Stanislaus County Public Works prior to a final inspection or occupancy, as required by the building permit.
- The applicant of the building permit shall pay the current Stanislaus County Public Works weighted labor rate for the plan review of the building and/or grading plan and all inspection fees. The Public Works inspector shall be contacted 48 hours prior to the commencement of any grading or drainage work on-site. The plans shall not be released until such time that all plan check and inspection fees have been paid.
- 25. The developer will be required to install or pay for the installation of any signs and/or markings, if warranted.
- 26. The streetlights shall be annexed into the North McHenry Avenue 2 Lighting District. The applicant shall provide all necessary documents and pay all the costs associated with the annexation process. Please be aware that this process may take approximately 4 to 6 months. The annexation of the parcel into the North McHenry Avenue 2 Lighting District shall be completed before the final/occupancy of any building permit associated with this project. Please contact Public Works at (209) 525-4130.
- 27. Prior to the parcel map being recorded, a County Service Area (CSA) shall be formed to provide funds to ensure future maintenance of the storm drainage system. The developer shall provide all necessary documents and pay all fees associated with the formation of the CSA. As part of the formation, a formula or method for the calculation of the annual assessment shall be approved. The formation process takes approximately 6 months and requires LAFCO approval.
- 28. An acceptable financial guarantee for the road improvements shall be provided to the Department of Public Works prior to the issuance of any building, grading or encroachment permit. This may be deferred if the work in the right-of-way is done prior to the issuance of any grading or building permit.
- 29. An Engineer's Estimate shall be provided for the road improvements so that the amount of the financial guarantee can be determined.
- 30. Prior to the Department of Public Works doing any plan review or inspections associated with the development, the subdivider shall sign a "Subdivision Processing/Inspection Agreement" and post a \$10,000 deposit with Public Works.
- 31. A set of Record Drawings as specified in the County standards and electronically scanned files for each sheet in a PDF format shall be provided to and approved by the Department of Public Works prior to acceptance of the road improvements.
- 32. All public roads shall have a fog seal applied prior to the end of the one year maintenance period and final acceptance by Stanislaus County.

Department of Environmental Resources

33. On-site sewage disposal shall be by individual Primary and Secondary wastewater treatment units, operated under conditions and guidelines established by Measure X. A statement on the final map to be recorded, shall read:

"As per Stanislaus County Code 16.10.020 and 16.10.040, all persons purchasing lots within the boundaries of this approved map should be prepared to accept the responsibilities and costs associated with the operation and maintenance of the required primary and secondary on-site wastewater treatment system. All persons are required to provide adequate maintenance and operate the on-site wastewater treatment system as a prescribed by the manufacturer, so as to prevent groundwater degradation."

- 34. On-site wastewater disposal system (OSWDS) shall be designed according to type and/or maximum occupancy of the proposed structure to estimated waste/sewage design flow rate and in accordance to number of plumbing fixture units proposed within the building. The dispersal field shall be designed and sized using field data collected from soil profile and percolation tests performed at the locations proposed for dispersal field and the 100 % future reserved.
- 35. The OSWDS designed system shall provide 100% of the original system for the "future expansion area".
- 36. On-site wastewater disposal system shall be installed as per engineer design. All setbacks required by DER are to be met at time of installation of the system.
- 37. The applicant shall determine, to the satisfaction of the DER, that a site containing (or formerly containing) residences or farm buildings, or structures, has been fully investigated (via Phase 1 study, and Phase 2 study if necessary) prior to the issuance of a grading permit. Any discovery of underground storage tanks, former underground storage tank locations, buried chemicals, buried refuse, or contaminated soil shall be brought to the immediate attention of DER.

Office of Emergency Services

38. Prior to the parcel map being recorded a dead end fire apparatus access road turnaround shall be installed on the north end of Spyres Way. The turnaround shall comply with Section 503.2.5 and Appendix D of the 2013 California Fire Code.

Building Permits Division

39. Building permits are required and the project must conform with the California Code of Regulations, Title 24.

Local Agency Formation Commission (LAFCO)

40. LAFCO approval shall be obtained prior to the extension of water and/or sewer services by the City of Modesto to serve the project.

Modesto Irrigation District

41. The applicant shall contact MID to certify the existence of any abandoned irrigation facilities and shall remove any facilities in accordance with MID practices if found. Also, if removed the applicant shall plug the remaining pipeline at the northern property line according to MID standard detail C 55 – Pipe Plug detail.

- 42. Prior to the issuance of a building permit the applicant shall submit a full set of full size drawings to the District's Electrical Engineering Department.
- 43. The applicant shall create any maintenance easements the District requires prior to recording of the final map.
- 44. The applicant shall protect or relocate any existing overhead and underground electric facilities within or adjacent to the project site as required by the District's Electrical Engineering Department. Relocation of any electrical facilities shall conform to the District's Electric Service Rules and all costs associated with relocation of electrical facilities shall be borne by the applicant.
- 45. Any trenching associated with the development shall maintain a 1:1 horizontal distance from any existing pole, determined by the depth of the trench. If trenching will encroach on this requirement, the applicant shall contact MID's Electrical Engineering Department for the proper requirements.

City of Modesto

- 46. Minimum building setbacks shall be as required by Title 10, Chapter 4, Table 4.2-1 of the Modesto Municipal Code for Highway Commercial (C-3) Zone uses for all buildings, and vehicle display areas and parking lots along all street frontages. The required setbacks along the street frontages shall be landscaped.
- 47. All landscaping shall be installed with plant types and irrigation methods in accordance to current State of California and City of Modesto Standards.
- 48. A reciprocal access and maintenance agreement for the north-south access between Parcels 1 and 2 shall and the adjacent parcel to the south of Parcel 2 shall be recorded prior to the parcel map being recorded.
- 49. An 8-inch water main shall be extended within the new Spyres Way from the existing pipe stub, to the northerly property line. A fifteen (15) foot easement shall be dedicated for City's access and maintenance of the main. A will serve letter will be issued to permit a connection to the water main, once the main is installed, inspected and accepted.
- 50. An 8-inch sewer main (dry pipe) shall be extended within the new Spyres Way from the existing pipe stub, to the northerly property line. The City is not providing sewer service to the project at this time.
- 51. All public improvements for this project shall be constructed to City of Modesto standards. Proposed driveways shall also be constructed to City standards for (drop curb commercial driveways) including spacing between them.

California Department of Transportation (CalTrans)

52. An encroachment permit shall be obtained prior to the commencement of any work done within the State right-of-way.

REZ & PM PLN2015-0027 Development Standards April 7, 2016 Page 7

Salida Fire District

- 53. The applicant shall pay Fire Service Impact Mitigation Fees as adopted by the District Board of Directors and currently in place at the time of issuance of construction permits.
- 54. The project shall meet the District's requirements of on-site water for fire protection prior to construction of any combustible materials. Fire hydrant(s) and static source locations, connections, and access shall be approved by the District.
- 55. Prior to, and during, combustible construction, the District shall approve provisions for serviceable fire vehicle access and fire protection water supplies.
- 56. Buildings of 5,000 square feet and greater shall be required to have fire sprinklers meeting the standards listed within the adopted California Fire Code and related amendments. In addition, there may be revisions to the fire sprinkler requirements in future fire code adoptions. At the time of construction, the most current, adopted fire code will be required and must be adhered to.
- 57. For buildings of 30 feet or three (3) or more stories in height, gated 2 ½" hose connections (Class III) for fire department use shall be installed on all floors in each required exit stairwell.
- 58. The project shall meet fire apparatus access standards. Two ingress/egress accesses to each parcel meeting the requirements listed within the California Fire Code.
- 59. Prior to recording the final map, issuance of a permit, and/or development, the owner(s) of the property will be required to form or annex into a community facilities district for operational services with the Salida Fire Protection District.

San Joaquin Valley Air Pollution Control District

- 60. Prior to the issuance of a building permit the applicant shall submit an Air Impact Assessment application to the District and pay any applicable off-site mitigation fees.
- 61. Prior to issuance of a building permit the applicant shall contact the District's Small Business Assistance Office to determine if an Authority to Construct is needed.

MITIGATION MEASURES

(Pursuant to California Public Resources Code 15074.1: Prior to deleting and substituting for a mitigation measure, the lead agency shall do both of the following: 1) Hold a public hearing to consider the project; and 2) Adopt a written finding that the new measure is equivalent or more effective in mitigating or avoiding potential significant effects and that it in itself will not cause any potentially significant effect on the environment.)

62. In order to mitigate traffic impacts for Parcel 2, the proposed location of the BMW dealership, the subdivider shall pay a fair share contribution of \$19,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 4.79% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

DRAFT

- 63. In order to mitigate traffic impacts for Parcel 1, the proposed location of the KIA dealership, the subdivider shall pay a fair share contribution of \$10,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 2.54% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
- 64. In order to mitigate impacts for Parcels 3, 4 and 5, the subdivider shall pay a fair share contribution for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for these parcels shall be a fair share portion of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

Please note: If Conditions of Approval/Development Standards are amended by the Planning Commission or Board of Supervisors, such amendments will be noted in the upper right-hand corner of the Conditions of Approval/Development Standards; new wording is in **bold**, and deleted wording will have a line through it.

Permitted Uses

- Phase 1 construction of an auto dealership (sales, storage, and vehicle maintenance) on Parcel 2.
- Phase 2 construction of auto dealership (sales, storage, and vehicle maintenance) on Parcel 1.
- Permitted uses consistent with Section 21.42.020 Planned Industrial District of the Stanislaus county Zoning Ordinance for Parcels 3-5.

Development Schedule

22

Phase 1 (Parcel 2)

A. Construction to begin on or before June 1, 2018.

Phase 2 (Parcels: 1, 3, 4, 5)

A. Construction to begin on or before June 1, 2031.

EXHIBIT D

SITE TRAFFIC IMPACT ANALYSIS

FOR

VALLEY LEXUS Modesto, California

Prepared For:

GIDEL & KOCAL CONSTRUCTION

574 Division Street Campbell, CA 95008

Prepared By:

KDAnderson & Associates, Inc.

3853 Taylor Road, Suite G Loomis, CA 95650 (916) 660-1555

Revised November 29, 2006 September 8, 2006

Job No. 3455-001

Modesto Lexus.rpt

SITE TRAFFIC IMPACT ANALYSIS FOR VALLEY LEXUS

TABLE OF CONTENTS

INTRODUCTION	1
Project Description	1
EXISTING SETTING	4
Study Area Streets	4
Existing Traffic Volumes	5
Levels of Service - Methodology	7
Existing Levels of Service	8
PROJECT CHARACTERISTICS	10
Trin Generation	10
Trip Distribution	11
YEAR 2010 PLUS PROJECT TRAFFIC CONDITIONS	12
Short-Term Cumulative Conditions (5 Year Planning Horizon)	12
Year 2010 with Valley Lexus	13
GENERAL PLAN BUILDOUT (YEAR 2025) TRAFFIC CONDITIONS	17
Year 2025 Traffic Volume Forecasts and LOS	17

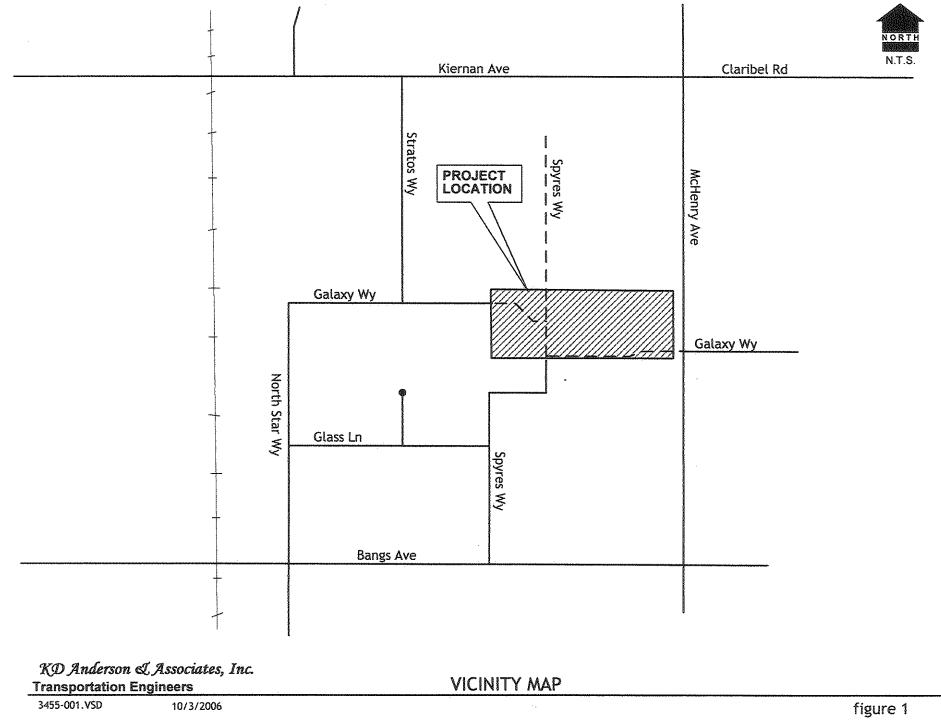
Revised November 29, 2006 September 8, 2006

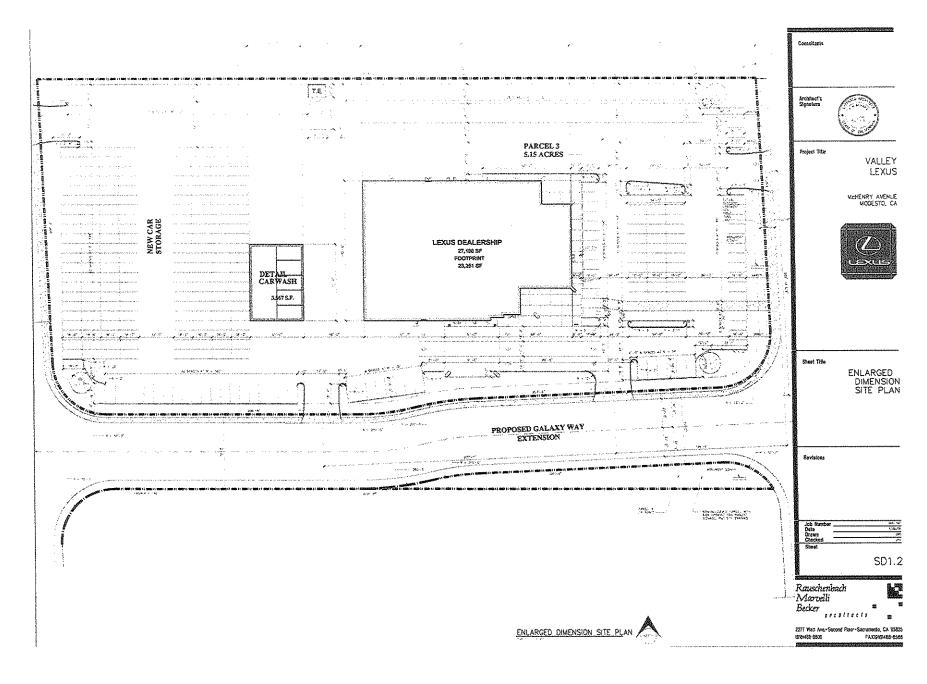
SITE TRAFFIC IMPACT ANALYSIS FOR VALLEY LEXUS ON McHENRY AVENUE

INTRODUCTION

This report documents **KDAnderson & Associates, Inc.'s** analysis of the potential traffic impacts associated with development of the **Valley Lexus Project** on McHenry Avenue. The proposed project is a new car sales facility to be located on the west side of McHenry Avenue between Bangs Avenue and Kiernan Avenue along the north side of Galaxy Way, as shown in Figure 1 and Figure 2. The proposed project replaces an existing operation on a smaller site located about ½ mile to the south that has leased been leased for the past 10 years.

The Valley Lexus project has yet to be approved by the County of Stanislaus, and a traffic study was prepared in 2005 for a larger project originally proposed on this site. This supplemental analysis supports a rezoning request before Stanislaus County and will be required by Caltrans to support an encroachment permit for constructing both frontage improvements and the extension of Galaxy Way west of McHenry Avenue. Galaxy Way is a local street that has been planned to link the business park area west of the proposed project with McHenry Avenue. Galaxy Way may also be extended easterly beyond McHenry Avenue in the future.


Project Description


The Valley Lexus Project occupies a site located on the west side of McHenry Avenue in the area between Bangs Avenue and Kiernan Avenue. The site is on the western edge of a commercial area that has been developed with a mix of highway oriented retail, service retail and light industrial uses. Other automobile dealerships exist along McHenry Avenue opposite the project site.

Development Assumptions. The project envisions the eventual development of a total of 25,183 square feet of new automobiles sales, service and detailing.

Proposed Circulation Concept. The proposed site plan features primary access via a driveway on McHenry Avenue north of Galaxy Way. Full access would be permitted at this location in a manner that is consistent with the provisions made by other commercial businesses along McHenry Avenue. The plan also features two driveways on Galaxy Way west of McHenry Avenue. The driveway closest to McHenry Avenue will be limited to right turns only.

KD Anderson & Associates, Inc.

10/3/2006

Transportation Engineers

SITE PLAN

3455-001.VSD

figure 2

EXISTING SETTING

This report section describes current traffic conditions on the portions of the area circulation system near the proposed project. McHenry Avenue, Kiernan Avenue and Bangs Avenue are major travel corridors serving the City of Modesto. These roads will provide regional access to the project. Stratos Way, North Star Way, Spyres Way and Galaxy Way are all local streets that provide access to the existing commercial area west of the subject site.

The quality of traffic flow on urban streets is typically governed by operation of major intersections. This study focuses on the locations immediately adjoining the project, and study locations were selected in consultation with Caltrans staff.

- Kiernan Avenue (SR 219) / Stratos Way Kiernan Avenue (SR 219) / McHenry Avenue (SR 108)
- Bangs Avenue / North Star Way
- Bangs Avenue / Spyres Way
- McHenry Avenue / Bangs Avenue McHenry Avenue / Galaxy Way

Study Area Streets

The text that follows describes streets and intersections serving the study area.

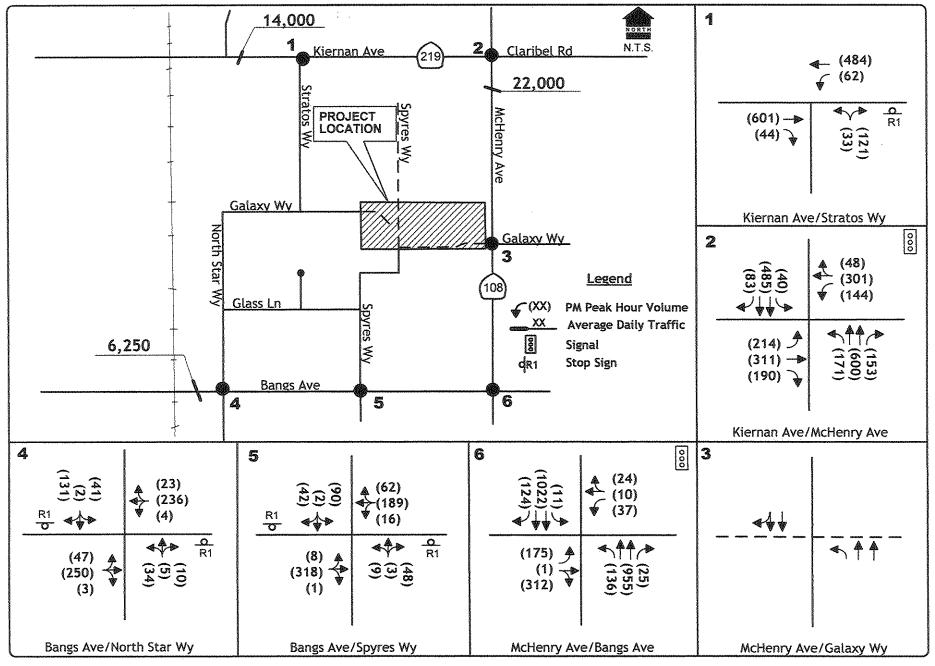
McHenry Avenue (SR 108) is a major north-south arterial providing circulation through central Modesto and linking the community with San Joaquin County to the north. In the immediate vicinity of the proposed project McHenry Avenue is a four lane urban street with a center two-way left turn lane. Recent traffic counts published by the California Department of Transportation (Caltrans) reveal that McHenry Avenue carries an *Average Daily Traffic (ADT)* volume of about 22,000 vehicles per day in the area south of Kiernan Avenue (2005).

Kiernan Avenue (SR 219) is an important east-west arterial street that extends easterly from an interchange on SR 99 to McHenry Avenue. Today, Kiernan Avenue is a rural two lane road with locations that have been improved to four lane urban standards as development has occurred. Caltrans is pursuing a project to improve Kiernan Avenue to a four lane section from SR 99 to McHenry Avenue. Caltrans traffic counts reveal that Kiernan Avenue carries 14,000 ADT just west of McHenry Avenue.

Bangs Avenue is an east-west collector street in the area between Kiernan Avenue and the Pelandale Avenue – Claratina Avenue Expressway. Bangs Avenue is two lane rural road that is being incrementally improved to urban standards as development occurs. New traffic counts conducted for this study in May 2005 indicated that Bangs Avenue carried 6,250 ADT in the area west of the North Star Way intersection.

Stratos Way, North Star Way and Spyres Way are local industrial streets that provide access to the existing commercial area bounded by the railroad tracks on the west, Kiernan Avenue on the north, Bangs Avenue on the south and McHenry Avenue on the east. On street parking is permitted

on these two lane roads. Based on the volume of traffic observed during the p.m. peak hour, each of these roads carries 1,800 to 2,400 ADT.


Spyres Way extends northerly from Bangs Avenue to the proposed project's southern boundary. The road is planned to be extended northerly into the vacant parcels located north of the subject site.

Galaxy Way is a local industrial street that links Stratos Way and North Star Way. Provisions have been made as the area was subdivided to permit Galaxy Way to extend to the east to McHenry Avenue, and today the road terminates at the proposed project's western boundary

Existing Traffic Volumes

P.m. peak hour intersection turning movements have been used to evaluate existing traffic conditions. These counts were conducted at the study intersections during May 2005 from 4:00 - 6:00 p.m. to isolate the peak one-hour traffic interval. Figure 3 displays existing peak hour data used for this analysis.

The report does not include evaluation of a.m. peak hour conditions. Previous traffic studies conducted for development projects on McHenry Avenue have shown that the a.m. volume on SR 108 in this area is only 70% of the p.m. peak hour volume. This relationship exists primarily due to the large number of retail uses along McHenry Avenue, most of which at not open in the a.m. peak hour. As the a.m. trip generation values for the auto dealerships is also only 77% of the p.m. rate, "worst case" conditions will be present in the p.m. peak hour, and analysis of a.m. conditions would not be expected to reveal any additional impacts.

KD Anderson & Associates, Inc.
Transportation Engineers

EXISTING TRAFFIC VOLUMES AND LANE CONFIGURATIONS

Levels of Service - Methodology

To assess the quality of existing traffic conditions and to provide a basis for evaluating project impacts, Levels of Service were calculated at study area intersections. "Level of Service" is a qualitative measure of traffic operating conditions whereby a letter grade "A" through "F", corresponding to progressively worsening operating conditions, is assigned to an intersection or roadway segment. Table 1 presents general characteristics associated with each LOS grade.

As the operation of major intersections primarily govern the quality of traffic flow conditions in the immediate vicinity of the site, intersection Level of Service analysis has been used for this study to determine the significance of resulting traffic conditions with development of the site.

TABLE 1 LEVEL OF SERVICE DEFINITIONS

Level of Service	Signalized Intersection	Unsignalized Intersection	Roadway (Daily)
"A"	Uncongested operations, all queues clear in a single-signal cycle. Delay ≤ 10.0 sec	Little or no delay. Delay ≤ 10 sec/veh	Completely free flow.
"B"	Uncongested operations, all queues clear in a single cycle. Delay > 10.0 sec and \(\leq 20.0 \) sec	Short traffic delays. Delay > 10 sec/veh and ≤ 15 sec/veh	Free flow, presence of other vehicles noticeable.
"C"	Light congestion, occasional backups on critical approaches. Delay > 20.0 sec and ≤ 35.0 sec	Average traffic delays. Delay > 15 sec/veh and < 25 sec/veh	Ability to maneuver and select operating speed affected.
"D"	Significant congestions of critical approaches but intersection functional. Cars required to wait through more than one cycle during short peaks. No long queues formed. Delay > 35.0 sec and \le 55.0 sec	Delay > 25 sec/veh and ≤ 35 sec/veh	Unstable flow, speeds and ability to maneuver restricted.
"E"	Severe congestion with some long	extreme congestion. Delay > 35 sec/veh and ≤ 50 sec/veh	At or near capacity, flow quite unstable.
"F"	Total breakdown, stop-and-go operation. Delay > 80.0 sec	Intersection blocked by external causes. Delay > 50 sec/veh	Forced flow, breakdown.
Sources: 200	0 Highway Capacity Manual.		Wide biblio by Wishington and Comment Annotation by Comment of the

Signalized Intersections. Based on direction from the City of Modesto, procedures used for calculating Levels of Service at signalized intersections are as presented in the <u>Highway Capacity Manual</u>, 2000 edition. In addition to traffic volume, these procedures make use of geometric information and traffic signal timing data. The City of Modesto has generally established LOS "D" as an operational threshold for signalized intersections beyond which mitigations are required, although the General Plan establishes specific locations where conditions in excess of the LOS D standard are accepted.

Unsignalized Intersections. For unsignalized intersections, gap acceptance and corresponding delays are used for Level of Service analysis. Procedures used for calculating unsignalized intersection Level of Service are also presented in the <u>Highway Capacity Manual</u>. Levels of Service at the unsignalized intersections, which are controlled by side street stop signs, are indicative of the magnitude of the delay incurred by motorists that must yield the right of way at an intersection.

Figure 3 also presents the existing geometric data used in this analysis for evaluating study intersections, including a description of the number of approach lanes and intersection control.

Existing Levels of Service

Table 2 summarizes the results of Level of Service calculations completed for each study intersection. Level of Service calculations are provided under separate cover.

Intersections. The signalized McHenry Avenue / Bangs Avenue intersection operates at LOS C during the p.m. peak hour. The McHenry Avenue / Kiernan Avenue intersection operates at LOS C. The delays experienced by motorists waiting to turn at other study locations are indicative of LOS C or better conditions.

TABLE 2
EXISTING LEVELS OF SERVICE

			P.M. Peak	Signal Warranted?	
# Location		Control	Average Delay		
1	Kiernan Avenue / Stratos Way				No
	WB left turn	NB Stop	9.4 sec	Α	
	NB left+right turn		20.7 sec	C	
2	McHenry Avenue / Kiernan Ave	Signal	33.6 sec	С	N/A
3	Bangs Avenue / North Star Way				No
	EB left turn	NB/SB Stop	7.9 sec	Α	
	WB left turn	_	7.8 sec	Α	
	NB left+thru+right turn		19.2 sec	C	
	SB left+thru+right turn		14.1 sec	В	
4	Bangs Avenue / Spyres Way				No
	EB left turn	NB/SB Stop	7.8 sec	Α	
	WB left turn		8.0 sec	Α	
	NB left+thru+right turn		12.1 sec	В	
	SB left+thru+right turn		19.0 sec	C	
5	McHenry Ave / Bangs Avenue	Signal	20.9 sec	С	N/A

Average delay is measured in seconds per vehicle

PROJECT CHARACTERISTICS

The text that follows describes the characteristics of the Valley Lexus project and the potential development on adjoining vacant property has been determined with regard to the number and directional distribution of project trips.

Trip Generation

The number of automobile trips projected to be generated by development of the project has been estimated through application of trip generation rates published by the Institute of Transportation Engineers in Trip Generation, 7th Edition. Table 3 presents applicable trip generation rates for the uses in this project.

TABLE 3 TRIP GENERATION RATES

		Trip Generation Rates				TOTAL PROPERTY OF THE PARTY OF		
		A.M. Peak Hour P.M. Peak		. Peak I	lour			
Land Use	Unit	Daily	In	Out	Total	In	Out	Total
New Automobile Sales and Service (841)	Ksf	33.34	1.52	0.53	2.05	1.03	1.61	2.64
Business Park (770)	Acres	149.79	16.03	2.83	18.86	3.37	13.47	16.84

Table 4 presents daily and p.m. peak hour trip generation estimates for the proposed project and for other potential development in the area. When completed, the project site could generate 1,135 daily trip ends, with 89 trips occurring during the a.m. peak hour and 101 trips generated during the p.m. peak hour. Because both the current traffic volumes and the volume of project traffic is significantly greater during the p.m. peak hour than during the a.m. peak hour, this access evaluation has been limited to the a.m. peak hour.

Other development on currently vacant parcels north of the project could generate 3,745 daily trips, with 472 trips occurring during the a.m. peak hour and 421 trips occurring during the p.m. peak hour. Other vacant parcels exist south of Bangs Avenue.

TABLE 4
TRIP GENERATION FORECAST

		Trip Generation						Washington and the same of the	
Land Use			A	A.M. Peak Hour			P.M. Peak Hour		
(ITE Code)	Quantity	Daily	In	Out	Total	In	Out	Total	
Valley Lexus	25.183 ksf	840	38	13	51	26	41	67	
Future Commercial	1.97 ac	295	32	6	38	7	27	34	
Site Total		1,135	70	19	89	33	68	101	
Other Business Park	25 acres	3,745	401	71	472	84	337	421	
Development to the							İ		
North of the project									
Other Business Park	13 acres	1,947	208	37	245	44	175	219	
Development South of									
Bangs Avenue									
Background Total	38 acres	5,692	607	108	717	128	512	640	

Trip Distribution

Having determined the number of trips that may be generated by development of the Valley Lexus and surrounding vacant properties, it was necessary to identify the directional distribution of project-generated traffic and assign traffic to the area street system. The project's trip distribution was identified based on the project's location in northern Modesto on observation of travel patterns of existing auto sales in the area. Business Park trip distribution was based on this data and on review of the travel patterns at the Stratos Way, North Star Way and Spyres Way intersections. Resulting distribution assumptions are summarized in Table 5.

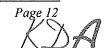
TABLE 5
TRIP DISTRIBUTION

eke parlambi ku ku kanadan ku ku kundan karaka ka ka ka ka Araman ke Araba Araba Araba Araba Araba Araba Araba	The state of the s	Percentage	of Total Trips
Direction	Route	Auto Sales	Business Park
North	McHenry Avenue	15%	10%
West	Kiernan Avenue	10%	10%
	Bangs Avenue	10%	25%
East	Claribel Road	5%	5%
South	McHenry Avenue	60%	50%
	Total	100%	100%

YEAR 2010 PLUS PROJECT TRAFFIC CONDITIONS

Potential short term traffic impacts and access associated with development of the proposed project have been evaluated with respect to two future planning horizons representative of "short-term" and "long-term" traffic conditions. The "short-term" condition corresponds to traffic conditions expected in four or five years assuming continuation of background traffic growth and/or development of other approved projects in the immediate study area. The "long-term" cumulative traffic base utilizes traffic projections developed with the City of Modesto's General Plan Traffic Model. This traffic base is representative of Year 2025 traffic conditions.

Short-Term Cumulative Conditions (4-5 Year Planning Horizon)


Traffic conditions in the study area will change over the next few years whether the proposed project is developed or not. The volume of traffic expected on major regional streets can be expected to continue to increase and the creation of new routes may alter existing travel patterns. In addition, the development of other north Modesto area projects will result in additional local traffic.

Traffic Growth. It has been assumed that current background traffic volumes will increase by 5% annually to the year 2010 in addition to the trips generated by identified development to the north and south of the proposed project. As noted in Table 4, another 640 p.m. peak hour trips that are not related to the proposed project have been assumed to be added to the local street system or to McHenry Avenue access points by the development of 38 acres of business park uses.

The location of access to future background development will have an effect on local circulation. Because the properties to the north of the project site have frontage on McHenry Avenue, access to this street, as well as to the northerly extension of Spyres Way has been assumed. However, access to Kiernan Way has been assumed for these properties. Access to all of the undeveloped parcels south of Bangs Avenue has been assumed to be via North Star Way and Spyres Way.

Background Circulation System Changes. This analysis assumes that the planned Kiernan Avenue / SR 219 Widening project has been completed. While the actual schedule for this project may extend beyond 2010, this project has been included since it has the potential to affect local circulation through changes to traffic controls at the Kiernan Avenue / Stratos Way intersection, which may eventually be limited to "right turns in and out only. To account for the possible effects of traffic control changes at this location, this analysis assumes "right turn only" access at this location.

If this restriction is made then two traffic movements would be affected. Traffic leaving Stratos Way by turning left onto westbound Kiernan Avenue would be diverted. Diversion to Bangs Avenue via the local streets system would be required, or motorists could turn right and make a uturn at the McHenry Avenue intersection. This analysis assumes diversion to Bangs Avenue though using the local circulation system. Westbound traffic turning left onto Stratos Way would also be affected. This traffic has been assumed to be diverted down McHenry Avenue to Bangs Avenue.

The Year 2010 forecast does not account for potential traffic diversion away from Bangs Avenue due to planned Pelandale Avenue improvements. While it is logical to assume that some traffic on Bangs Avenue may be redistributed it is not possible to forecast the change as part of this local area study.

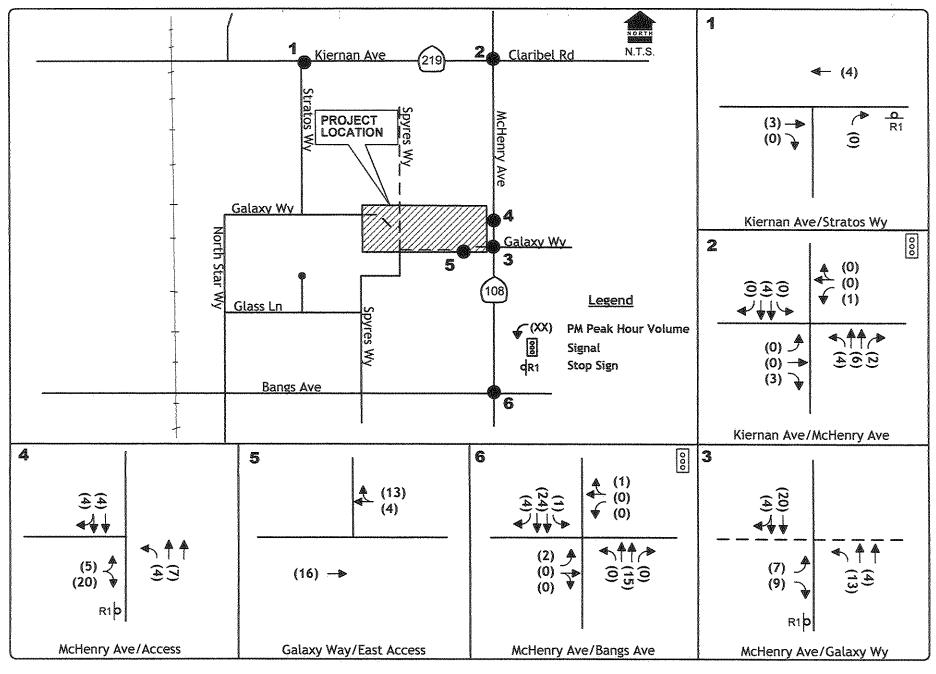
Year 2010 with Valley Lexus

To evaluate short-term conditions in the study area the trips generated by the proposed project were superimposed onto projected background traffic volumes. Figure 4 presents "project only" traffic volumes with the access as proposed.

Diversion to Galaxy Way. Opening Galaxy Way as a public street could affect some traffic movements. Traffic that was using the Kiernan Avenue / Stratos Way intersection but was diverted by the planned "right turn only" traffic control could use this connection. This analysis assumes that 50% of the westbound left turns from Kiernan Avenue onto Stratos Way will use the Galaxy Way extension. This is equal to 31 p.m. peak hour trips.

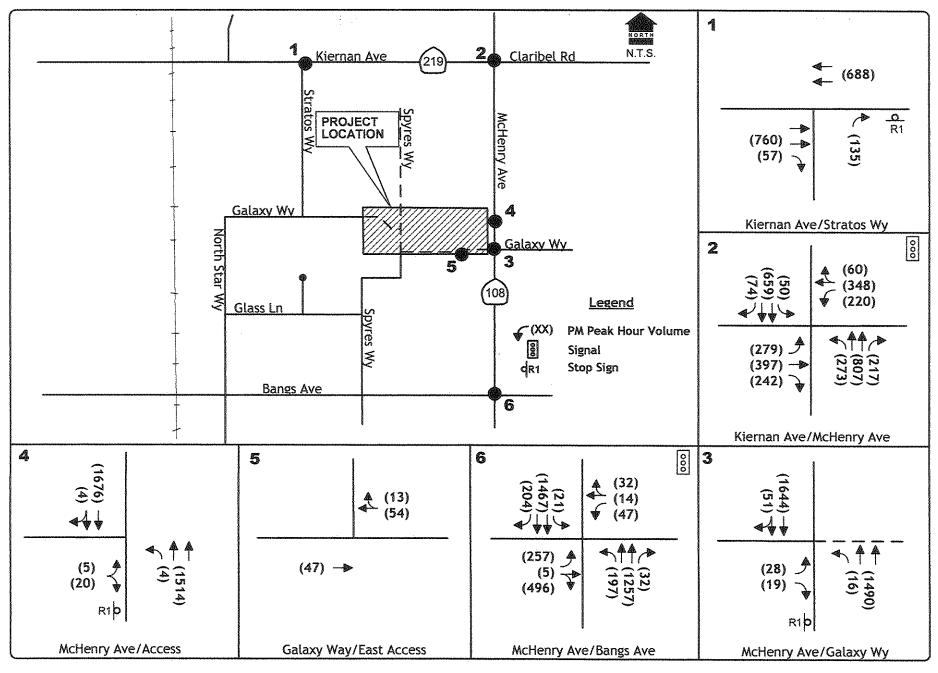
A portion of the traffic already being generated in the area west of the project site is headed north on McHenry Avenue via Bangs Avenue. We have assumed that in addition to the diversion noted above, another 30 peak hour trips would leave Bangs Avenue and use the Galaxy Way connection.

Figure 5 presents resulting "2010 plus Valley Lexus" traffic volumes. These traffic volumes were used to calculate Levels of Service at each of the study intersections, and the results are presented in Table 7.


Peak Hour Levels of Service. As noted in Table 6, without improvements, year 2010 traffic conditions in the study area are projected to exceed Caltrans and County standards at two locations. This is primarily due to the magnitude of the background traffic increase expected over the next five years and due to the assumed development of currently vacant properties with business park uses.

On Bangs Avenue the Spyres Way intersection would operate poorly under each scenario if sidestreet stops are retained. Signalization would be needed and a traffic signal would deliver LOS C during the p.m. peak hour under all scenarios. Development of the Galaxy Way extension will not eliminate the need to eventually signalize this intersection.

The Galaxy Way approach to McHenry Avenue is projected to operate at LOS F under year 2010 conditions. This condition is not unusual for unsignalized access onto a four lane arterial carrying the through traffic volumes anticipated in this report. However, projected traffic volumes are below peak hour warrants for signalization. Therefore no additional improvements would be immediately warranted, and the proposed intersection operation would be considered acceptable.


The project's access onto McHenry Avenue is projected to operate at LOS D. Satisfactory operations are expected primarily due to the low traffic volume entering and exiting the site at this location.

KD Anderson & Associates, Inc.
Transportation Engineers

VALLEY LEXUS ONLY TRAFFIC VOLUMES
AND LANE CONFIGURATIONS

KD Anderson & Associates, Inc.

Transportation Engineers

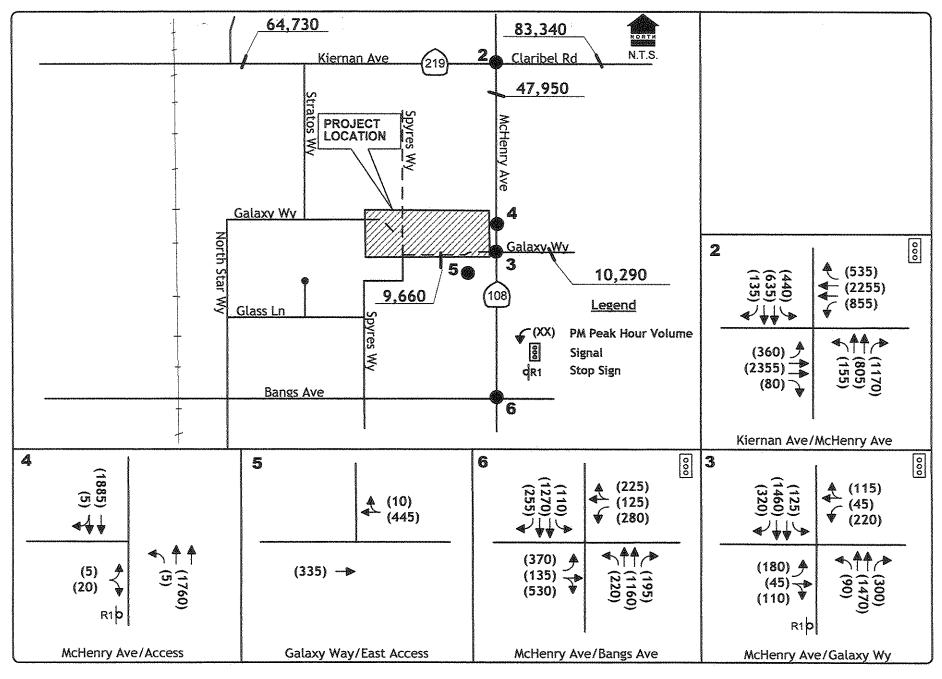
2010 PLUS PROJECT TRAFFIC VOLUMES AND LANE CONFIGURATIONS

Třights

TABLE 6
YEAR 2010 P.M. PEAK HOUR LEVELS OF SERVICE

			Existing	3	Plus Project Galaxy Way E to McHenry A	Traffic Signa	
#	Location	Control	Average Delay	LOS	Average Delay	LOS	Warranted?
1	Kiernan Avenue / Stratos Way WB left turn NB left+ight turn	NB Stop	9.4 sec 20.7 sec	A C	23.1 sec	- C	No
2	Kiernan Avenue / McHenry Ave	Signal	33.6 sec	<u>C</u>	47.2 sec	D	
4	McHenry Avenue / Access NB left turn EB left+right turn	EB Stop	-	-	18.1 sec 26.5 sec	C D	No
3	McHenry Ave / Galaxy Way NB left turn EB left+right turn	EB Stop	***	•	19.0 sec 50.4 sec	C F	No
	Bangs Avenue / North Star Way EB left turn WB left turn NB left+thru+right turn SB left+thru+right turn	NB/SB Stop	7.9 sec 7.8 sec 19.2 sec 14.1 sec	A A C B	8.5 sec 8.1 sec 56.3 sec 23.6 sec	A A F D	No
	Bangs Avenue / Spyres Way (overall) EB left turn WB left turn NB left+thru+right turn SB left+thru+right turn	NB/SB Stop	7.8 sec 8.0 sec 12.1 sec 19.0 sec	A A B C	8.2 sec 8.5 sec 20.5 sec 97.8 sec	A A C F	Yes
		Signal		· · · · · · · · · · · · · · · · · · ·	24.9 sec	С	
66	McHenry Ave / Bangs Avenue	Signal	20.9 sec	C	41.1 sec	D	N/A

GENERAL PLAN BUILD OUT (YEAR 2025) TRAFFIC CONDITIONS WITH THE PROPOSED PROJECT


Traffic conditions at the McHenry Avenue / Galaxy Way intersection have also been evaluated within the context of the year 2025 traffic conditions identified in the GPU EIR.

Year 2025 Traffic Volume Forecasts and Levels of Service

The City of Modesto's regional travel demand forecasting model did not originally assume that Galaxy Way will extend west from McHenry Avenue, and for the prior analysis it was necessary to reconfigure the model slightly to include this road. Land use in this area of the Modesto model was made to accommodate the project. A run was made under this condition to suggest conditions with the Galaxy Way extension, and this was accomplished by adding a roadway link between McHenery Avenue and Spyres Court.

Year 2025 daily traffic volumes with and without the Galaxy Way extension are presented in Table 7. Comparison of the Levels of Service at each location can be a general indication of the long-term effect of circulation system changes. However, the model itself is too "coarse' to provide specific traffic volumes for individual intersections.

A two step process was employed to estimate p.m. peak hour turning movements for study intersections. First long term daily traffic volumes were compared to current traffic volumes in order to identify equivalent growth rates. These growth rates were then used to interpolate future intersection peak hour volumes. Current peak hour turning movement volumes were adjusted to future volumes using methods described in the Transportation Research Board's (TRB's) NCHRP Report 255, *Highway Traffic Data for Urbanized Area Project Planning and Design*. Figure 6 presents Year 2025 traffic volumes.

KD Anderson & Associates, Inc.
Transportation Engineers

GENERAL PLAN BUILDOUT TRAFFIC VOLUMES AND LANE CONFIGURATIONS

3455-001.VSD

10/3/2006

figure 6

TABLE 7
YEAR 2025 DAILY TRAFFIC VOLUMES AND LEVELS OF SERVICE

			Without Gala:	xy Way Exte	ension	With Galax	nsion	
				Volume /		Daily	Volume /	
Street	From	То	Daily Volume	Capacity	LOS	volume	Capacity	LOS
Kiernan	West of	Stratos Court	31,430 WB	0.67	В	31,130 WB	0.66	В
Avenue	Stratos Way		33,460 EB	0.71	С	33,600 EB	0.72	С
	Stratos Way	McHenry	31,430 WB	0.67	В	31,130 WB	0.66	В
		Ave	34,810 EB	0.74	С	31,750 EB	0.68	В
	McHenry	East of	41,680 WB	0.89	D	41,510 WB	0.89	D
	Ave	McHenry	42,220 EB	0.90	D	41,830 EB	0.89	D
		Ave						
McHenry	North of	Kiernan Ave	23,790 SB	0.85	D	23,480 SB	0.83	D
Avenue	Kiernan Ave	was a second	23,960 NB	0.85	D	23,960 NB	0.85	D
	Kiernan Ave	Galaxy Way	23,820 SB	0.85	D	23,840 SB	0.85	D
			21,150 NB	0.75	С	24,010 NB	0.85	D
	Galaxy Way	Bangs Ave	19,310 SB	0.69	В	16,560 SB	0.59	Α
			16,600 NB	0.60	В	16,770 NB	0.60	В
	Bangs	South of	23,480 SB	0.83	D	24,720 SB	0.88	D
	Avenue	Bangs Ave	22,150 NB	0.79	С	21,810 NB	0.78	С
Bangs	West if North	North Star	8,320 WB	0.67	В	8,300 WB	0.66	В
Avenue	Star Way	Way	10,120 EB	0.81	D	10,200 EB	0.82	D
	North Star	McHenry	12,290 WB	0.98	Е	8,820 WB	0.71	C
	Way	Ave	12,760 EB	1.02	F	12,200 EB	0.98	Е
	McHenry	East of	5,260 WB	0.84	D	6,300 WB	1.00	F
	Ave	McHenry	6,720 EB	1.07	F	6,440 EB	1.03	F
		Ave						
Galaxy	West of	McHenry	1,470 WB	0.24	Α	4,600 WB	0.74	С
Way	McHenry	Ave	1470 EB	0.24	Α	5,060 EB	0.81	D
-	Ave							
	McHenry	East of	4,630 WB	0.74	С	4,900 WB	0.78	С
	Ave	McHenry	4,990 EB	0.80	D	5,390 EB	0.86	D
		Ave						

Assessment of Year 2025 Conditions. Year 2025 Levels of Service have been calculated assuming no changes to study area intersection geometry. As noted in Table 8, with 4 lane Kiernan Avenue and 4 lane McHenry Avenue the McHenry Blvd / Kiernan Avenue intersection will operate at LOS F. This conclusion is consistent with the direction in the City of Modesto's General Plan and CFF program which indicate that an urban interchange will eventually be required at this location. The proposed Valley Lexus project will contribute its fair share to the cost of this project through the City's fee program.

Similarly, conditions at the McHenry Avenue / Bangs Avenue intersection are projected to reach LOS F. Since there are not plans to widen mainline SR 108 in this area beyond four lanes, it would be necessary to add auxiliary lanes at this location in order to improve the projected Level of Service. Assuming that four lanes remain on mainline SR 108, achieving LOS D conditions (i.e., City of Modesto standard) will require widening the intersection to provide right turn lanes on the McHenry Avenue approaches and widening the Bangs Avenue approaches to provide dual left turn lanes, a single through lane and a separate right turn lane. Because Valley Lexus lacks frontage in this area, the project will contribute its fair share to the cost of long term improvements by paying adopted fees.

Conditions at the McHenry Avenue / Galaxy Way intersection would eventually warrant a traffic signal when development beyond that current occurring proceeds. Specifically, although the City of Modesto reports no formal application, development east of McHenry Avenue that would make use of a Galaxy Way extension is permitted under the General Plan and included in traffic model forecasts. If future development proceeds, signalization will be required, and at that time development of right turn lanes on the northbound and southbound McHenry Avenue approaches will be appropriate. With this level of improvement the intersection would operate at LOS C.

Valley Lexus should contribute its fair share to the cost of a future traffic signal at this intersection. This fair share can be calculated by first identifying all of the future traffic that will be on either leg of Galaxy Way (1,550 vehicles) and subtracting existing traffic generated by the existing east side dealership at its driveway just north of Galaxy Way (78 vehicles). The fair share of Valley Lexus trips is (57 vehicles) divided by the "net" new future trips (1,472 vehicles), or 4% of the cost of a future signal.

Because traffic signals are not yet required and right turn lanes are not needed until the intersection is signalized, project proponents have agreed to reserve the right of way needed for a future right turn lane along the length of the McHenry Avenue frontage. While this area will be used to display automobile in the "interim" period, no permanent structures will be constructed. The minimum clear area need to accommodate a future right turn lane is within 58 feet of the centerline of McHenry Avenue. The actual clear area will be determined based on City of Modesto design standards.

TABLE 8 YEAR 2025 P.M. PEAK HOUR LEVELS OF SERVICE

*************			Year 20)25		
	Location	Control	Average Delay	LOS	Traffic Signal Warranted?	
2	Kiernan Avenue / McHenry Ave	Signal	493.5 sec	F	N/A	
4	McHenry Avenue / Access NB left turn EB left+right turn	EB Stop	21.8 sec 33.7 sec	C D	No	
3	McHenry Ave / Galaxy Way NB left turn SB left turn EB left+thru+right turn WB left+thru+right turn	EB / WB Stop	23.9 sec 28.1 sec >999 sec >999 sec	C D F F	Yes	
		Signal*	26.7 sec	С		
6	McHenry Ave / Bangs Avenue	Signal	119.8 sec	F	N/A	

	Þ	•	e de la companya de l	(4		•	Î	p	\	\	4
Movement	EBL	EBT	EBR	WBL.	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ŋ	个	7	η.	ß		ħ	个个	7/	ሻ	<u> </u>	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00		0,95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1824		1770	3539	1583	1770	3539	1583
Fit Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1824		1770	3539	1583	1770	3539	1583
Volume (vph)	214	311	190	144	301	48	171	600	153	40	485	83
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	233	338	207	157	327	52	186	652	166	43	527	90
RTOR Reduction (vph)	0	0	144	0	6	- 0	0	. 0	105	0	0	67
Lane Group Flow (vph)	233	338	- 63	157	373	- 0	186	652	61	43	527	23
Turn Type	Prot		Perm	Prot			Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		- 1	6	
Permitted Phases		and the second second second second	4						2			6
Actuated Green, G (s)	15.4	27.8	27.8	10.5	22.9		13.1	33.5	33.5	3.2	23.6	23.6
Effective Green, g (s)	15.4	27.8	27.8	10.5	22.9		13.1	33.5	33.5	3.2	23.6	23.6
Actuated g/C Ratio	0.17	0.31	0.31	0.12	0.25		0.14	0.37	0.37	0.04	0.26	0.26
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3,0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	300	569	484	204	459		255	1303	- 583	62	918	411
v/s Ratio Prot	c0.13	0.18		0.09	c0.20		c0.11	0.18		0.02	e0.15	
v/s Ratio Perm			0.04						0.04	ener er is 6 timbris state i der il devider lier	et hannezat essenin assusado ti	0.01
v/c Ratio	0.78	0.59	0.13	0.77	0.81		0.73	0.50	0.10	0.69	0.57	0.06
Uniform Delay, d1	36.2	26.8	22.9	39.1	32.0	en maren den mettidel da later di indicato	37.3	22.3	18.9	43.4	29.3	25.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	11.9	1.7	0.1	15.9	10.5		10.0	1.4	0.4	28.5	2.6	0.3
Delay (s)	48.1	28.5	23.0	55.0	42.6		47.2	23.6	19.3	71.9	31.9	25.6
Level of Service	D	С	С	E	D	4:00:460000000000000	D	С	В	E	С	C
Approach Delay (s)		32.9			46.2			27.3			33.7	
Approach LOS		С			. D.			С			C	•
Intersection Summary												
HCM Average Control D	elay		33.6	Н	CM Lev	el of Se	rvice		С			
HCM Volume to Capacit			0.72									
Actuated Cycle Length (AND ASSESSED ASSESSED ASSESSED.	91.0	S	um of lo	st time	(s)	and the second section of the section of t	16.0			
Intersection Capacity Ut			66.8%	10	U Leve	l of Ser	vice		C			
Analysis Period (min)	vvv ₂ , meno en politico (1.500 f. 1.500 f. 1.50	nerganisation of fill of model lights	15	and the second s		The state of the Language Sales						
c Critical Lane Group								5005			- 60 M	

	À	2000 By	*		al arres		1	1	P	1	\	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ነ	ß	and the second s	ሻ	ĵ»	- Service of the Serv	ħ	<u>ት</u> ት	7	8	ቀቀ	ř
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	in the state of th	4.0	4.0	·	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.85		1.00	0.89	and the second second second second	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1584		1770	1666		1770	3539	1583	1770	3539	1583
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	1584		1770	1666		1770	3539	1583	1770	3539	1583
Volume (vph)	175	1	312	37	10	24	136	955	25	- 11	1022	124
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	190	1	339	40	11	26	148	1038	27	12	1111	135
RTOR Reduction (vph)	0	277	0	0	25	. 0	0	0	10	0	0	69
Lane Group Flow (vph)	190	63	0	40	12	0	148	1038	17	12	1111	66
Turn Type	Prot			Prot			Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases									2			6
Actuated Green, G (s)	12.9	13.6		3.2	3.9		11.5	53.0	53.0	0.7	42.2	42.2
Effective Green, g (s)	12.9	13.6		3.2	3.9		11.5	53.0	53.0	0.7	42.2	42.2
Actuated g/C Ratio	0.15	0.16		0.04	0.05		0.13	0.61	0.61	0.01	0,49	0.49
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3,0	3.0	3.0	3.0
Lane Grp Cap (vph)	264	249		65	75		235	2168	970	14	1727	772
v/s Ratio Prot	c0.11	c0.04		0.02	0.01		c0.08	0.29		0.01	c0.31	
v/s Ratio Perm									0.01	Server den naan die art Leen verbrand bleer den		0.04
v/c R atio	0.72	0.25		0.62	0.16		0.63	0.48	0.02	0.86	0.64	0.09
Uniform Delay, d1	35.1	32.0	no company a proposition designation and	41.0	39.7		35.5	9.2	6.6	42.9	16.5	11.8
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	9.0	0.5		16.1	1.0	Tanasan kababbaha	5.2	0.8	0.0	164.6	1.9	0.2
Delay (s)	44.1	32.5		57.1	40.7		40.7	9.9	6.6	207.5	18.4	12.1
Level of Service	D	С	en e	E	D	n remaks kalendraks	D	A	A	F	В	В
Approach Delay (s)		36.7	8.6.6		49.2			13.6			19.5	See d
Approach LOS		. D			D			В			В	
Intersection Summary												
HCM Average Control D		. anian anamananan kan kan kan kan ka	20.9	H	ICM Lev	el of Se	ervice		C			
HCM Volume to Capacit			0.61									
Actuated Cycle Length (nearran no anno 1900 anno 1900	86.5		um of lo				12.0			
Intersection Capacity Ut	ilization		71.8%	ΙÇ	CU Leve	l of Ser	vice		C			
Analysis Period (min)			15									
 Critical Lane Group 					349.23 5							Paragraphic Services

		esamely).	**		en e	4	1	Å	/ *	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	个	ř	ሻ	4		ħ	个个	7	ክ	种	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4 Annual Comment (1979)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1,00	1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1822		1770	3539	1583	1770	3539	1583
Fit Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1,00	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1822		1770	3539	1583	1770	3539	1583
Volume (vph)	279	397	242	220	348	60	273	807	217	50	659	74
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	303	432	263	239	378	65	297	877	236	54	716	80
RTOR Reduction (vph)	0	0	194	0	6	0	0	0	150	0	0	61
Lane Group Flow (vph)	303	432	69	239	437	- 0	297	877	86	54	716	19
Turn Type	Prot		Perm	Prot			Prot	4	Perm	Prot		Perm
Protected Phases	7	- 4	0.00	- 3	- 8		5	2		. 1	6	
Permitted Phases	1		4	,					2			6
Actuated Green, G (s)	20.0	28.8	28.8	18.8	27.6		20.6	40.0	40.0	6.4	25.8	25.8
Effective Green, g (s)	20.0	28.8	28.8	18.8	27.6		20.6	40.0	40.0	6.4	25.8	25.8
Actuated g/C Ratio	0.18	0.26	0.26	0.17	0.25		0.19	0.36	0.36	0.06	0.23	0.23
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	322	488	414	303	457		331	1287	576	103	830	371
v/s Ratio Prot	0.17	c0.23		0.14	c0.24		c0.17	0.25		0.03	c0.20	
v/s Ratio Perm			0.04						0.05			0.01
v/c Ratio	0.94	0.89	0.17	0.79	0.96		0.90	0.68	0.15	0.52	0.86	0.05
Uniform Delay, d1	44.4	39.0	31.3	43.7	40.6		43.7	29.6	23.5	50.3	40.4	32.6
Progression Factor	1.00	1.00	1.00	1.00	1.00		0.93	0.69	0.59	1.00	1.00	1.00
Incremental Delay, d2	34.8	17.2	0.2	12.8	30.9		20.6	2.2	0.4	4.7	11.5	0.3
Delay (s)	79.3	56.2	31.5	56.5	71.5		61.4	22.8	14.3	55.1	51.9	32.9
Level of Service	-	E	С	E	E		E	С	В	E	D	С
Approach Delay (s)		56.7			66.2			29.5			50.3	
Approach LOS		E			E	٠.	-	С			D	
Intersection Summary												
HCM Average Control D		en Antone Marris	47,2	Н	CM Lev	el of Se	rvice		D	with the second	LAGUA DINANDO AND -	e Delanat Naphabat - Naphabat
HCM Volume to Capacit	y ratio		0.88									
Actuated Cycle Length (110.0		um of lo				12.0			
Intersection Capacity Uti	lization	4	84.1%	- 10	U Leve	l of Sen	/ice		E			
Analysis Period (min)			15		ma ana ana a			ede t skulsen e dele ""	State annual Country	namentalis money -		and a section of the
c Critical Lane Group							5.55.55.5					

			***	(4	4	•	1	p	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBA-	SBL	SBT	SBR
Lane Configurations	K	Þ		ħ	ß		ካ	个个	7	দ্	个个	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util, Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.85		1.00	0.90		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1586		1770	1667		1770	3539	1583	1770	3539	1583
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1,00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	1586		1770	1667		1770	3539	1583	1770	3539	1583
Volume (vph)	257	5	496	47	14	32	197	1257	32	21	1467	204
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	279	- 5	539	51	15	35	214	1366	35	23	1595	222
RTOR Reduction (vph)	0	186	0	0	33	0	0	0	16	0	0	96
Lane Group Flow (vph)	279	358	0	51	17	0	214	1366	19	23	1595	126
Turn Type	Prot			Prot			Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases							(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		2			6
Actuated Green, G (s)	25.2	27.9		3.2	5.9		15.4	60.9	60.9	2.0	47.5	47.5
Effective Green, g (s)	25.2	27.9		3.2	5.9		15.4	60.9	60.9	2.0	47.5	47.5
Actuated g/C Ratio	0.23	0.25		0.03	0.05		0.14	0.55	0.55	0.02	0.43	0.43
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	405	402		51	89		248	1959	876	32	1528	684
v/s Ratio Prot	0.16	c0.23		c0.03	0.01		c0.12	0.39		0.01	c0.45	
v/s Ratio Perm									0.01			0.08
v/c Ratio	0.69	0.89		1.00	0.19		0.86	0.70	0.02	0.72	1.04	0.18
Uniform Delay, d1	38.8	39.6		53.4	49.8		46.3	17.8	11.1	53.7	31.2	19.3
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.25	0.45	0.05
Incremental Delay, d2	4.8	21.1		126.0	1.0		25.2	2.1	0.0	50.9	34.2	0.5
Delay (s)	43.6	60.7		179.4	50.8		71.4	19.9	11.1	118.0	48.4	1.5
Level of Service	D	E		F	D		E	В	В	F	D 43.6	Α
Approach Delay (s)		54.9			115.8			26.6			- 4 э.ө D	
Approach LOS		D			F			C			U	
Intersection Summary												
HCM Average Control D	elay		41.1	Н	CM Lev	el of Se	rvice		D			
HCM Volume to Capacit			0.97									
Actuated Cycle Length (110.0		um of lo				16.0			
Intersection Capacity Ut	lization		99.1%	10	CU Leve	l of Ser	vice		F			
Analysis Period (min)	en er segnet til film fra film film film film film film film film	an en esta de la companya de la comp	15	eryment Metallick Carte Million	en e	A -employee		Anna III and management of grands				
c Critical Lane Group									323			

	A			†	#		
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7	ħ	个个	٩ß		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%	17,155644	
Volume (veh/h)	28	19	16	1490	1644	51	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	30	21	17	1620	1787	55	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)				·			
Percent Blockage							
Right turn flare (veh)							
	WLTL.	5.6.2	8 2 2 1		0. G. (8)	8.8.2	
Median storage veh)	1			2.00	1000		
Upstream signal (ft)	^ ^^	A 00	A 00	1184	1220		
pX, platoon unblocked	0.80	0.82	0.82 1842				
vC, conflicting volume	2659 1815	921	1044				
vC1, stage 1 conf vol vC2, stage 2 conf vol	845						
vCu, unblocked vol	2143	681	1807			25-15-15-15	
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	5.8		leti sistemati na				
tF (s)	3.5	3.3	2.2				
p0 queue free %	63	94	94		1912-1914-1919-1919-1919-1919-1919-1919-		SE PARTINISTA STATE OF THE SECOND SEC
cM capacity (veh/h)	82	321	275				
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB2
Volume Total	30	21	17	810	810	1191	651
Volume Left	30	-0	17	0	0	0	0
Volume Right	0	21	0	0	0	0	55
cSH	82	321	275	1700	1700	1700	1700
Volume to Capacity	0.37	0.06	0.06	0.48	0.48	0.70	0.38
Queue Length 95th (ft)	36	5	5	0	.0	0	. 0
Control Delay (s)	73.1	17.0	19.0	0.0	0.0	0.0	0.0
Lane LOS	F	С	С				
Approach Delay (s)	50.4		0.2			0.0	
Approach LOS	F		-	•			
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Ut	ilization		57,1%	JC	CU Leve	l of Ser	vice B
Analysis Period (min)	ravora, https://www.ine.gipeticol	e in elementary states in the selection of	15		a ayaa ay a ahaa aa aa ahaa ahaa ahaa a		

Movement EBL EBR NBL NBT SBT SBR	
	Carality September 1981
Lane Configurations Y 1 14 15	. *
Sign Control Stop Free Free	
Grade 0% 0% 0%	ancan anna an talan gama
Volume (veh/h) 5 20 4 1514 1676 4	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92	
Hourly flow rate (vph) 5 22 4 1646 1822 4	
Pedestrians	
Lane Width (ft)	
Walking Speed (ft/s)	
Percent Blockage	
Right turn flare (veh) Median type TWLTL	
Median storage veh) 1	
Upstream signal (ft) 1008	
pX, platoon unblocked 0.81 0.81 0.81	
vC, conflicting volume 2655 913 1826	
vC1, stage 1 conf vol 1824	
vC2, stage 2 conf vol 832	
vCu, unblocked vol 2807 662 1786	
tC, single (s) 6.8 6.9 4.1	
tC, 2 stage (s) 5.8	pagagan entaggagaganak
tF (s) 3.5 3.3 2.2	
p0 queue free % 93 93 98	500494080008504003
cM capacity (veh/h) 74 329 279	5,050,05,04
Direction, Lane # EB 1 NB 1 NB 2 NB 3 SB 1 SB 2	
Volume Total 27 4 823 823 1214 612	
Volume Left 5 4 0 0 0 0	·
Volume Right 22 0 0 0 0 4	25.5.0
cSH 195 279 1700 1700 1700	
Volume to Capacity 0.14 0.02 0.48 0.48 0.71 0.36	
Queue Length 95th (ft) 12 1 0 0 0	
Control Delay (s) 26.5 18.1 0.0 0.0 0.0 0.0 Lane LOS D C	
	100 m 200 m 20
Approach Delay (s) 26.5 0.0 0.0 Approach LOS D	Original sala
Intersection Summary	
Average Delay 0.2	
Intersection Capacity Utilization 56.5% ICU Level of Service B	g e e e
Analysis Period (min) 15	

	À		*	1	· ·	•	1	1	Jan .	1	↓	4
Movement	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	个 个	7	ሻ	ተ ተ		ķ	仲	7	ሻ	个 个	ř
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00	1,00	0.95	1,00
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3437		1770	3539	1583	1770	3539	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1,00
Satd. Flow (perm)	1770	3539	1583	1770	3437		1770	3539	1583	1770	3539	1583
Volume (vph)	360	2355	80	855	2255	535	155	805	1170	440	635	135
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	391	2560	87	929	2451	582	168	875	1272	478	690	147
RTOR Reduction (vph)	0	0	13	0	- 10	0	. 0	0	283	0	0	81
Lane Group Flow (vph)	391	2560	74	929	3023	0	168	875	989	478	690	66
Turn Type	Prot		Perm	Prot			Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		- 5	2		1	6	
Permitted Phases			4						2			6
Actuated Green, G (s)	20.0	68.0	68.0	45.0	93.0		23.0	47.0	47.0	24.0	48.0	48.0
Effective Green, g (s)	20.0	68.0	68.0	45.0	93.0		23.0	47.0	47.0	24.0	48.0	48.0
Actuated g/C Ratio	0.10	0.34	0.34	0.22	0.46		0.12	0.24	0.24	0.12	0.24	0.24
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3,0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	177	1203	538	398	1598		204	832	372	212	849	380
v/s Ratio Prot	0.22	c0.72		c0.52	0.88		0.09	0.25		c0.27	0.19	
v/s Ratio Perm			0.05	na fa la Alba Diadel alli na Vida		an contrare an energy and another felt	Smoto a claric structural structural	es sa consecuencia de la consecu	c0.62		namata amende la consenta a l'estab	0.04
v/c Ratio	2.21	2.13	0.14	2.33	1.89		0.82	1.05	2.66	2.25	0.81	0.17
Uniform Delay, d1	90.0	66.0	45.7	77.5	53.5	en er Stegen Stefenstreinen (86.5	76.5	76.5	88.0	71.8	60.3
Progression Factor	1.00	1,00	1.00	1.00	1.00		0.78	0.74	0.48	1.00	1.00	1.00
Incremental Delay, d2	562.1	510.4	0.1	608.2	403.6		18.2	41.9	752.2	579.5	8.4	1.0
Delay (s)	652.1	576.4	45.8	685.7	457.1		85.7	98.9	788.7	667.5	80.1	61,3
Level of Service	F	F	D	F	F		F	F	F	F	F	E
Approach Delay (s)		571.0			510.7			476.9	E.S.M.		291,5	
Approach LOS		F			F			F	eris - Sulainen - Lein Ste, Dein S		F	Variotis Niloinal attentis
Intersection Summary												
HCM Average Control E			493.5		HCM Lev	rel of Se	ervice		F	displace in the second		V#201581555
HCM Volume to Capaci	particle and the second		2.33	5 2 5 5	_							
Actuated Cycle Length (200.0		Sum of Id				16.0			
Intersection Capacity Ut	ilization	2331	72.4%		CU Leve	or Ser	vice		Н			
Analysis Period (min)		SESSIONES PROPERTY	15									
 c Critical Lane Group 							450 475 1250 13		1950 NOVE 1850 NE			455-F61521

	À	sama 🏰	~	*	4	4.	4	Î	p	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	B		Ŋ	Þ		ħ	个个	ŕ	ሻ	ቀ ቀ	۴
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1,00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.89		1.00	0.89		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	55 B. E.	0.95	1.00	1.00	0.95	1.00	1,00
Satd. Flow (prot)	1770	1664		1770	1662		1770	3539	1583	1770	3539	1583
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1,00	0.95	1.00	1,00
Satd. Flow (perm)	1770	1664		1770	1662		1770	3539	1583	1770	3539	1583
Volume (vph)	180	45	110	220	45	115	90	1470	300	125	1460	320
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	196	49	120	239	49	125	98	1598	326	136	1587	348
RTOR Reduction (vph)	0	45	0	0	49	0	0	0	69	0	-0	73
Lane Group Flow (vph)	196	124	0	239	125	0	98	1598	257	136	1587	275
Turn Type	Prot		, , , , , , , , , , , , , , , , , , ,	Prot	·····		Prot		Perm	Prot		Perm
Protected Phases	7	- 4		3	8		5	2		1	6	
Permitted Phases	0.01	ACC - 101119 A 12010 A 12010		en e	V00007V/4004V4-4507V550	TENNESSEN LENGTH GREGORIEL	elamore of Dissertance Services	BUCKUSER CIEBRALONE	2		errende of the control of the contro	6
Actuated Green, G (s)	29.7	18.9		30.7	19.9		14.6	113.1	113,1	21.3	119.8	119.8
Effective Green, g (s)	29.7	18.9	1915 <u>-21</u> 14115,18051111	30.7	19.9	20 (14.6	113.1	113.1	21.3	119.8	119.8
Actuated g/C Ratio	0.15	0.09		0.15	0.10		0.07	0.57	0.57	0.11	0.60	0.60
Clearance Time (s)	4.0	4.0	10 BCB 50 4 B B0 4 1 4 B B0 4 1 4 B B0 8 4 A	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	263	157		272	165		129	2001	895	189	2120	948
v/s Ratio Prot	0.11	0.07		c0.14	c0.08		0.06	c0.45		c0.08	c0.45	
v/s Ratio Perm				SANDA ASSANCE	et in the state of				0.16	American de la companie de la compa		0.17
v/c Ratio	0.75	0.79		0.88	0.76		0.76	0.80	0.29	0.72	0.75	0.29
Uniform Delay, d1	81.5	88.6		82.8	87.7	-	91.0	34.4	22.5	86.5	29.2	19.5
Progression Factor	1,00	1.00		1.00	1.00		0.90	0.33	0.11	0.77	0.18	0.01
Incremental Delay, d2	10.9	22.5	A MARIEN MARIEN ASTRONO	25.8	18.0	TANGTON CONTRACTOR	11.3	1.6	0.4	1.2	0.2	0.1
Delay (s)	92.4	111.1		108.6	105.8		93.2	13.1	2.8	68.1	5.4	0.3
Level of Service	F	F	and and a second se	F	F	n 1885 ya di Sand di Laffe, sali di Sangia mariji.	F	В	Α	E	Α	Α
Approach Delay (s)		101.1			107.4			15.3			8.7	
Approach LOS		F			F	Name and the second	en greek gesteerkeering for en state of the entire	В	er Camera e e e e e e e e e e e e e e e e e e		Α	
Intersection Summary												
HCM Average Control D	elay		26.7	-	ICM Lev	el of Se	rvice		С	and makes to		e and a their control
HCM Volume to Capacit			0.77									
Actuated Cycle Length (■ A.I.T. → 2 · () · () · · · · · () · · · · · () · · · ·		200.0	S	ium of lo	st time	(s)		8.0			
Intersection Capacity Ut			82.2%		OU Leve				E			
Analysis Period (min)			15	on particular appears about	erene erenen erenen generalen eren	og se sessertitets er til setterske til folktillet		apparentini	a management and an artist of the second			
c Critical Lane Group				6539					ē (3.50 g	in Oxida		

	and the same of th	unsa <mark>di</mark> ge		(4	*	1	<i>P</i>	1	-	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	Þ		ሻ	Þ		ነ ካ	ቀ ቀ	7	*1	ት ት	۴
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		1.00	1.00	9-5-20	1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.88	handassa mikili sastaurtukkeule	1.00	0.90		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0,95	1.00		0.95	1.00		0.95	1,00	1,00	0.95	1.00	1,00
Satd. Flow (prot)	1770	1640	ettikressekvestr-statie	1770	1683		1770	3539	1583	1770	3539	1583
Flt Permitted	0,95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	1640		1770	1683		1770	3539	1583	1770	3539	1583
Volume (vph)	370	135	530	280	125	225	220	1160	195	110	1270	255
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	402	147	576	304	136	245	239	1261	212	120	1380	277
RTOR Reduction (vph)	0	70	0	0	34	0	0	0	63	.0	0	76
Lane Group Flow (vph)	402	653	0	304	347	0	239	1261	149	120	1380	201
Turn Type	Prot		and defendant forther than beautiful	Prot		//a-tan/a-mana/a/aana/a-ta	Prot		Perm	Prot		Perm
Protected Phases	7	4		- 3	- 8		5	2	_	1	6	
Permitted Phases		resultana estive Stretete et		-seconoselessives					2			6
Actuated Green, G (s)	50.2	66.0		28.0	43.8		23.0	76.0	76.0	14.0	67.0	67.0
Effective Green, g (s)	50.2	66.0	an inserven	28.0	43.8		23.0	76.0	76.0	14.0	67.0	67.0
Actuated g/C Ratio	0.25	0.33		0.14	0.22		0.12	0.38	0.38	0.07	0.34	0.34
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3,0
Lane Grp Cap (vph)	444	541		248	369		204	1345	602	124	1186	530
v/s Ratio Prot	0.23	c0.40		c0,17	0.21		c0.14	0.36	0.00	0.07	c0.39	0.40
v/s Ratio Perm					4 4 4		2 45	44	0.09	6 69	446	0.13
v/c Ratio	0.91	1.21		1.23	0.94		1.17	0.94	0.25	0.97	1.16	0.38
Uniform Delay, d1	72.6	67.0		86.0	76.8		88.5	59.7	42.4	92.8	66.5	50.7
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.86 54.9	0.81 80.0	0.69 1.3
Incremental Delay, d2	21.6	109.4		132.0	32.0		117.0	13.6	1.0	134.3	133.8	36.5
Delay (s)	94.2	176.4		218.0	108.9		205.5 F	73.3 E	43.4 D	104.0 F	100.0 F	90.9 D
Level of Service	F	F		F	F 157.3		Г	88.0	U	F	118.7	U
Approach Delay (s)		147.0			197.3 F	2325		- 60.V F			F	E005/025/4
Approach LOS		F			. [""			Г				
Intersection Summary												
HCM Average Control D		mungan, kata maja m, na gamagan ga abbigad	119.8	 -	ICM Lev	el of Se	rvice		F	Nakasakan magamatan		
HCM Volume to Capacit		0.000000	1.19			9. A. S. S		3300	13 A2 32 1			
Actuated Cycle Length (en ear an eonae eon eo an boll is -1 v P	200.0			ost time		gsegyges/1096/10	16.0			
Intersection Capacity Ut	ilization	1	15.9%	10	JU Lev∈	of Ser	vice		Н			
Analysis Period (min)			15	825501403-107-F857-0								
c Critical Lane Group												

			4	1	Į,	1			•
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	k 4		i i	ት ት	ሳ ን				na nome ma a constitutação de
Sign Control	Stop			Free	Free				
Grade	0%	man N. Ostoro Lanco de marga Samora N	A STORM COMPACTOR MANAGEMENT AND	0%	0%				a nasaanno metra
Volume (veh/h)	- 5	20	4	1760	1885	4			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	and the second s	eringa a Sandalaharin kari kanada pendadah kanada Palanasia (Palanasia Aleksaria)	Drugosus e Pistole i e
Hourly flow rate (vph)	- 5	22	- 4	1913	2049	4			
Pedestrians									x20-00-00000000000000000000000000000000
Lane Width (ft)									
Walking Speed (ft/s)	وروس والمراض والمساور والمراور والمراور	atomic in the military							
Percent Blockage				79 34 650					
Right turn flare (veh)			et traditione description and		San Harana Salama Labaran				0ete#86758
	TWLTL								
Median storage veh)	1		venintskepenike ketalikake		Netroproduciono (n. 1888)				
Upstream signal (ft)				212	1008				
pX, platoon unblocked	0.73	0.82	0.82						W. 200 (200)
vC, conflicting volume	3016	1027	2053						
vC1, stage 1 conf vol	2051								
vC2, stage 2 conf vol	965								
vCu, unblocked vol	2646	810	2065		64458365656658				
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)	5.8								
tF (s)	3.5	3.3	2.2						
p0 queue free %	90	92	98						
cM capacity (veh/h)	56	264	218						
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2			
Volume Total	27	4	957	957	1366	687			
Volume Left	5	4	0	0	0	0			anend sevented
Volume Right	22	0	- 0	0	0	4			
cSH	152	218	1700	1700	1700	1700	men hann sellen med et eller kriste en de sellen som en anvælle blev med klimet i Stelle		
Volume to Capacity	0.18	0.02	0.56	0.56	0.80	0.40			
Queue Length 95th (ft)	. 16	2	0	0	0	0			
Control Delay (s)	33.7	21.8	0.0	0.0	0.0	0.0			
Lane LOS	D	C	annessa este este este este este este este	September 19 ann an		en er	eurygrenneliggneren europeiskeit		(1881) (1891)
Approach Delay (s)	33.7	0.0	5563	2.0	0.0				16.5E-1
Approach LOS	D				•		4		
Intersection Summary									
Average Delay		AND THE PARTY OF T	0.3						
Intersection Capacity U	tilization		62.2%	IQ	U Leve	l of Service	В		
Analysis Period (min)	and the substitute of the subs		15						

APPENDIX I-1

RESOLUTION NO. 87-1

RESOLUTION OF THE STANISLAUS COUNTY PLANNING COMMISSION AMENDING DEVELOPMENT POLICIES WITH RESPECT TO THE REVIEW AND APPROVAL OF <u>PLANNED</u> DEVELOPMENT APPLICATION ON UPPER MCHENRY AVENUE.

- WHEREAS, the proper regulation of development along McHenry has been the subject of concern to the City of Modesto and the County of Stanislaus for a long period of time, and
- WHEREAS, the Stanislaus County Board of Supervisors, on the recommendation of the County Planning Commission, amended the Land Use Element of the Stanislaus County General Plan to designate the upper McHenry frontages for "Planned Development", and
- WHEREAS, it is consistent with the "Planned Development" designation to establish development policies which will serve as guidelines for property owners and the County in the formulation and review of specific development proposals, and
- WHEREAS, the Stanislaus County Planning Commission adopted Resolution No. 74-1 on April 11, 1974 to establish said policies.
- NOW, THEREFORE, BE IT RESOLVED that the following policies are hereby established by the Stanislaus County Planning Commission with respect to the development of the "Planned Development" designations on upper McHenry Avenue.

Precise plans should be adopted to provide for two collector streets to cross McHenry at one-quarter mile intervals between Pelandale Avenue and Kiernan Avenue.

No planned development application should be approved which would conflict with the above mentioned precise plans or with the adopted Pelandale Avenue precise plan.

All planned development approvals shall provide for establishment of access driveways at intervals no closer than 200 feet where possible and on-site accessways (customer-front; freight-rear) shall be provided as approved.

Shopping centers should be permitted only at the McHenry Avenue-Pelandale Avenue and McHenry Avenue-Kiernan Avenue intersections.

Planned development approval on properties which are no on the intersections noted above should be limited to uses with a demonstrated history of lower traffic generation.

The "Planned Development" designation which has been applied to upper McHenry Avenue should not be interpreted to allow non-residential uses to project easterly or westerly from the

McHenry frontage to the extent that they could initially or potentially diminish the agricultural or residential usage of lands in the immediate area. With the exception of the shopping centers at the corners listed above, the following depths are hereby established:

- A. From Modesto Irrigation District Lateral No. 6 north 450 feet from the centerline of McHenry Avenue.
- B. From the Modesto City Limits north to Lateral No. 6 on the east side of McHenry Avenue - 488 feet from the centerline of McHenry Avenue.
- C. From the Modesto City Limits north to Lateral No. 6 on the west side of McHenry Avenue - the westerly property lines of the existing parcels.

Planned development applications on upper McHenry Avenue should include provisions for the ultimate usage of entire contiguous ownerships. However, the application may provide for the phasing of development.

All non-residential planned development approvals shall include as an exhibit thereto, a signed agreement in a form satisfactory to the Modesto City Attorney and Stanislaus County Counsel guaranteeing that the property on which the planned development is applicable will be annexed to the City of Modesto and/or connected to the Modesto public sewer system when such annexation or sewer connection is demanded by the City of Modesto with the approval of the Stanislaus County Board of Supervisors.

All residential planned development approvals shall include provisions for annexation to the City of Modesto prior to occupancy thereof.

All planned development applications should provide for consistence with City of Modesto and County of Stanislaus standards with respect to landscaping, off-street parking, sign control and street improvements.

The Planning Commission should review all divisions of land within the planned development designation to insure that such divisions are consistent with the above policies and approved land uses.

PASSED AND ADOPTED this 21st day of May, 1987 on motion of Commissioner Parks, seconded by Commissioner Steinpress, by the following vote:

AYES: Coe, Entin, Graham, Hertle, Parks, Rettig, Steinpress,

Wikoff

NOES: None ABSTAIN: Stephens

THOMAS RETTIG, CHATRPERSON

DEPARTMENT OF PLANNING AND COMMUNITY DEVELOPMENT

1010 10th Street, Suite 3400, Modesto, CA 95354 Phone: 209.525.6330 Fax: 209.525.5911

CEQA INITIAL STUDY

Adapted from CEQA Guidelines APPENDIX G Environmental Checklist Form, Final Text, December 30, 2009

1. **Project title:** REZONE AND PARCEL MAP APPLICATION NO. PLN2015-0027 – VALLEY BMW/KIA

2. Lead agency name and address: Stanislaus County

1010 10th Street, Suite 3400 Modesto, CA 95354

3. Contact person and phone number: Jeremy Ballard, Assistant Planner

4. Project location: 4761 McHenry Avenue (State Route 108),

between Claribel Road and East Bangs Avenue, north of the City of Modesto.

APN:046-010-020

5. Project sponsor's name and address: Valley Lexus/B.E. Fitzpatrick

c/o Dennis E. Wilson Horizon Consulting P.O. Box 1448 Modesto, CA 95353

6. General Plan designation: Planned Industrial (P-I)/Planned Development

(P-D)

7. Zoning: A-2-10 (General Agriculture)

8. Description of project:

This is a request to rezone a 9±- acre parcel from A-2-10 (General Agriculture) to Planned Development (P-D), subdivide the property into five parcels and extend Spyres Way through the site. The project proposes to construct a 30,241 square foot commercial building for an auto dealership during Phase 1 and a 16,009 square foot commercial building during phase 2. The proposed dealership will be operated 7 days a week ranging from 7:00 a.m. – 9:00 p.m. on Monday through Saturday and 9:00 a.m. – 7:00 p.m. on Sundays. The applicant anticipates a maximum of 30 employees for the Phase 1 dealership. The dealership will contain an office and storage area, with sales and service department. The project is within the City of Modesto's Sphere of Influence.

58

9. Surrounding land uses and setting:

Directly to the south is Valley Lexus Car Dealership, to the north is undeveloped commercial property and various auto sales, to the west lies light industrial development and to the east is State Route 108 and auto sales.

10. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.):

City of Modesto, California Department of Transportation, Stanislaus County Department of Public Works, Modesto Irrigation District.

Signature

The er			ed by this project, involving at least one klist on the following pages.
□Aest	hetics	☐ Agriculture & Forestry Resources	☐ Air Quality
□Biol	ogical Resources	☐ Cultural Resources	☐ Geology / Soils
□Gree	nhouse Gas Emissions	☐ Hazards & Hazardous Materials	☐ Hydrology / Water Quality
□ Lan	d Use / Planning	☐ Mineral Resources	□ Noise
□ Pop	ulation / Housing	□ Public Services	☐ Recreation
□ Trar	nsportation / Traffic	☐ Utilities / Service Systems	☐ Mandatory Findings of Significance
	I find that although the poe a significant effect in project proponent. A MI I find that the proposed ENVIRONMENTAL IMPACT I find that the proposed unless mitigated" impact an earlier document put measures based on the REPORT is required, but I find that although the potentially significant of DECLARATION pursuant earlier EIR or NEGATIVI	d project COULD NOT have a significant will be prepared. roposed project could have a significant this case because revisions in the project IGATED NEGATIVE DECLARATION will sed project MAY have a significant CT REPORT is required. project MAY have a "potentially significant to applicable legal standards, and earlier analysis as described on attached it must analyze only the effects that remove the composed project could have a significate effects (a) have been analyzed adequate applicable standards, and (b) have been applicable standards, and (b) have been analyzed adequates applicable standards, and (b) have been applicable standards, and (b) have been analyzed adequates applicable standards, and (b) have been applicable standards.	t effect on the environment, and ar ficant impact" or "potentially significan effect 1) has been adequately analyzed in nd 2) has been addressed by mitigation and sheets. An ENVIRONMENTAL IMPACT
	Jeremy Ballard	Feb	ruary 4 2016

Date

EVALUATION OF ENVIRONMENTAL IMPACTS:

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the lead agency has determined that a particular physical impact may occur, than the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced).
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration.

Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:

- a) Earlier Analysis Used. Identify and state where they are available for review.
- b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
- c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). References to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) the significant criteria or threshold, if any, used to evaluate each question; and
 - b) the mitigation measure identified, if any, to reduce the impact to less than significant.

ISSUES

I. AESTHETICS Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect on a scenic vista?			X	
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				х
c) Substantially degrade the existing visual character or quality of the site and its surroundings?			X	
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			х	

Discussion: The site itself is not considered to be a scenic resource or unique scenic vista. The site is currently unimproved land, formerly consisting of a 5 unit legal non-conforming apartment complex and single family dwelling. The applicant will provide landscaping as required by Ordinance, which will be held to City of Modesto standards. A condition of approval will be added to the project requiring City of Modesto design standards for plant types and irrigation methods. A condition of approval will be added as well to the project requiring all exterior lighting shall be designed and approved to City of Modesto Standards.

Mitigation: None.

References: Application information, Referral response from City of Modesto dated October 23, 2015, Stanislaus County Zoning Ordinance, Stanislaus County General Plan and Support Documentation¹.

II. AGRICULTURE AND FOREST RESOURCES: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?			x	
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?			х	

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?			х
d) Result in the loss of forest land or conversion of forest land to non-forest use?			x
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?		Х	

Discussion: The project site and its surrounding area is classified as "Urban and Built-Up Land" and "Stanislaus Vacant or Disturbed Land" by the Farmland Mapping and Monitoring Program and soils include Hanford Sandy Loam along with Tujunga Loamy Sand. The site does not appear to have been farmed for some time. The most recent land use consisted of a 5-unit legal non-conforming apartment complex and single family dwelling. If approved, the proposed rezone and resulting subdivision will not convert farmland to non-agriculture uses as the surrounding area is nearly built out with light industrial and commercial uses.

Mitigation: None.

References: California State Department of Conservation Farmland Mapping and Monitoring Program - Stanislaus County Farmland 2014, Department of Conservation California Farmland Finder; USDA – NRCS Web Soil Survey.

III. AIR QUALITY: Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Conflict with or obstruct implementation of the applicable air quality plan?			х	
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?			x	
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?			x	
d) Expose sensitive receptors to substantial pollutant concentrations?			x	
e) Create objectionable odors affecting a substantial number of people?			х	

Discussion: The proposed project is located within the San Joaquin Valley Air Basin (SJVAB) and, therefore, falls under the jurisdiction of the San Joaquin Valley Air Pollution Control District (SJVAPCD). In conjunction with the Stanislaus Council of Governments (StanCOG), the SJVAPCD is responsible for formulating and implementing air pollution control strategies. The SJVAPCD's most recent air quality plans are the 2007 PM10 (respirable particulate matter) Maintenance Plan, the 2015 for the 1997 PM2.5 standard (fine particulate matter), and the 2007 Ozone Plan (The District has also adopted similar ozone plans such as 2014 RACT SIP and 2013 Plan for the Revoked 1-Hour Ozone

Standard). These plans establish a comprehensive air pollution control program leading to the attainment of state and federal air quality standards in the SJVAB, which has been classified as "extreme non-attainment" for ozone, "attainment" for respirable particulate matter (PM-10), and "non-attainment" for PM 2.5, as defined by the Federal Clean Air Act.

The primary source of air pollutants generated by this project would be classified as being generated from "mobile" sources. Mobile sources would generally include dust from roads, farming, and automobile exhausts. Mobile sources are generally regulated by the Air Resources Board of the California EPA which sets emissions for vehicles and acts on issues regarding cleaner burning fuels and alternative fuel technologies. As such, the District has addressed most criteria air pollutants through basin wide programs and policies to prevent cumulative deterioration of air quality within the Basin. The project will increase traffic in the area and, thereby, impacting air quality. The applicant estimates that there will be a maximum of 30 employees on shift for BMW and estimated to have 20 employees for a future dealership of that size, approximately 55 daily customers for both dealerships, and up to 3 truck trips per day.

Potential impacts on local and regional air quality are anticipated to be less than significant, falling below SJVAPCD thresholds, as a result of the nature of the proposed project and project's operation after construction. Implementation of the proposed project would fall below the SJVAPCD significance thresholds for both short-term construction and long-term operational emissions, as discussed below. Because construction and operation of the project would not exceed the SJVAPCD significance thresholds, the proposed project would not increase the frequency or severity of existing air quality standards or the interim emission reductions specified in the air plans.

For these reasons, the proposed project would be consistent with the applicable air quality plans. Also, the proposed project would not conflict with applicable regional plans or policies adopted by agencies with jurisdiction over the project and would be considered to have a less than significant impact.

Construction activities associated with new development can temporarily increase localized PM10, PM2.5, volatile organic compound (VOC), nitrogen oxides (NOX), sulfur oxides (SOX), and carbon monoxide (CO) concentrations a project's vicinity. The primary source of construction-related CO, SOX, VOC, and NOX emission is gasoline and diesel-powered, heavy-duty mobile construction equipment. Primary sources of PM10 and PM2.5 emissions are generally clearing and demolition activities, grading operations, construction vehicle traffic on unpaved ground, and wind blowing over exposed surfaces.

Construction activities associated with the proposed project would consist primarily of construction of the 30,241 and 16,000 square foot buildings, associated parking lot, and drainage basin. These activities would not require any substantial use of heavy-duty construction equipment and would require little or no demolition or grading as the site is presently unimproved and considered to be topographically flat. Consequently, emissions would be minimal. Furthermore, all construction activities would occur in compliance with all SJVAPCD regulations; therefore, construction emissions would be less than significant without mitigation.

A comment referral received from the SJVAPCD confirmed that the project would have less than significant adverse impact on air quality. The comment letter also stated the proposed project will be subject to District Rule 9510 as well as possibly subject to Rules 4102, 4601 and 4641. Based on these comments, the applicant will be responsible for an Air Impact Assessment, contacting the Air District to determine if the project is subject to an Authority to Construct permit, and any other mitigation or fees prescribed by the air district. Conditions of approval will be added to the project to address these comments.

Mitigation: None.

References: Referral response from the San Joaquin Valley Air Pollution Control District dated September 17, 2015; San Joaquin Valley Air Pollution Control District - Regulation VIII Fugitive Dust/PM-10 Synopsis; Stanislaus County General Plan and Support Documentation¹

IV. BIOLOGICAL RESOURCES Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?			x	
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?			x	
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?			x	
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			Х	
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?			X	
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?			х	

Discussion: It does not appear this project will result in impacts to endangered species or habitats, locally designated species, or wildlife dispersal or mitigation corridors. There are no known sensitive or protected species or natural communities located on the site and/or in the surrounding area which is almost entirely built up with urban uses. While the parcel is currently undeveloped, it is considered in-fill as the surrounding area has been developed with light industrial and commercial uses. If approved, the development would have a less than significant impact on biological resources.

Mitigation: None.

References: Application material, California Natural Diversity Database, Stanislaus County General Plan and Support Documentation¹

V. CULTURAL RESOURCES Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Cause a substantial adverse change in the significance of a historical resource as defined in § 15064.5?				x
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?			х	

c) Directly or indirectly destroy a unique paleontological	Y	
resource or site or unique geologic feature?	^	
d) Disturb any human remains, including those interred	v	
outside of formal cemeteries?	^	

Discussion: It does not appear this project will result in significant impacts to any archaeological or cultural resources. A records search was conducted by the Central California Information Center (CCIC) indicated that there was a low probability of discovery of prehistoric or historic resources onsite; nor have any cultural resources been discovered or reported in the immediate vicinity. The project was referred to the Native American Heritage Commission (NAHC), but no response was received to date. A condition of approval will be added to the project that requires that if any resources are found, construction activities will halt at that time until a qualified survey is performed.

Mitigation: None.

References: Central California Information Center (CCIC) report dated March 16, 2015; Stanislaus County General Plan and Support Documentation¹

VI. GEOLOGY AND SOILS Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			x	
ii) Strong seismic ground shaking?			Х	
iii) Seismic-related ground failure, including liquefaction?			х	
iv) Landslides?			Х	
b) Result in substantial soil erosion or the loss of topsoil?			Х	
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?			х	
d) Be located on expansive soil creating substantial risks to life or property?			х	
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?			х	

Discussion: As contained in Chapter Five of the General Plan Support Documentation, the areas of the County subject to significant geologic hazard are located in the Diablo Range, west of Interstate 5; however, as per the California Building Code, all of Stanislaus County is located within a geologic hazard zone (Seismic Design Category D, E, or F) and a soils test may be required as part of the building permit process. Results from the soils test will determine if unstable or expansive soils are present. If such soils are present, special engineering of the structure will be designed and built according to building standards appropriate to withstand shaking for the area in which they are constructed. Any earth moving is subject to Public Works Standards and Specifications which consider the potential for erosion and run-off prior to permit approval. Likewise, any addition of a septic tank or alternative waste water disposal system would require the approval of the Department of Environmental Resources (DER) through the building permit process, which also takes soil type into consideration within the specific design requirements. At this point, the project site will be served by an onsite

septic system. However, the applicant will be constructing dry sewer lines for the project area's ability to connect to sanitary sewer services once available to the City of Modesto. Conditions of approval will be added to meet City standards for the construct of the sewer lines.

Mitigation: None.

References: California Building Code; Stanislaus County General Plan and Support Documentation¹

VII. GREENHOUSE GAS EMISSIONS Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			Х	
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?			Х	

Discussion: The principal Greenhouse Gasses (GHGs) are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and water vapor (H2O). CO2 is the reference gas for climate change because it is the predominant greenhouse gas emitted. To account for the varying warming potential of different GHGs, GHG emissions are often quantified and reported as CO2 equivalents (CO2e). In 2006, California passed the California Global Warming Solutions Act of 2006 (Assembly Bill [AB] No. 32), which requires the California Air Resources Board (ARB) to design and implement emission limits, regulations, and other measures, such that feasible and cost-effective statewide GHG emissions are reduced to 1990 levels by 2020. As a requirement of AB 32, the ARB was assigned the task of developing a Climate Change Scoping Plan that outlines the state's strategy to achieve the 2020 GHG emissions limits. This Scoping Plan includes a comprehensive set of actions designed to reduce overall GHG emissions in California, improve the environment, reduce the state's dependence on oil, diversify the state's energy sources, save energy, create new jobs, and enhance public health. The Climate Change Scoping Plan was approved by the ARB on December 22, 2008. According to the September 23, 2010, AB 32 Climate Change Scoping Plan Progress Report, 40 percent of the reductions identified in the Scoping Plan have been secured through ARB actions and California is on track to its 2020 goal.

Although not originally intended to reduce GHGs, California Code of Regulations (CCR) Title 24, Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings, was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. Since then, Title 24 has been amended with recognition that energy-efficient buildings require less electricity and reduce fuel consumption, which in turn decreases GHG emissions. The current Title 24 standards were adopted to respond to the requirements of AB 32. Specifically, new development projects within California after January 1, 2011, are subject to the mandatory planning and design, energy efficiency, water efficiency and conservation, material conservation and resources efficiency, and environmental quality measures of the California Green Building Standards (CALGreen) Code (California Code of Regulations, Title 24, Part 11).

The proposed project would result in short-term emissions of GHGs during construction. These emissions, primarily CO2, CH4, and N2O, are the result of fuel combustion by construction equipment and motor vehicles. The other primary GHGs (HFCs, PFCs, and SF6) are typically associated with specific industrial sources and are not expected to be emitted by the proposed project. As described above in Section III - Air Quality, the use of heavy-duty construction equipment would be very limited; therefore, the emissions of CO2 from construction would be less than significant.

The project would also result in direct annual emissions of GHGs during operation. Direct emissions of GHGs from operation of the proposed project are primarily due to automobile trips. This project would not result in emission of GHGs from any other sources. Consequently, GHG emissions are considered to be less than significant.

Mitigation: None.

References: Application materials; Stanislaus County General Plan and Support Documentation¹

VIII. HAZARDS AND HAZARDOUS MATERIALS Would	Potentially	Less Than	Less Than	No Impact
the project:	Significant Impact	Significant With Mitigation	Significant Impact	
	illipact	Included	iiipact	
a) Create a significant hazard to the public or the				
environment through the routine transport, use, or			X	
disposal of hazardous materials?				
b) Create a significant hazard to the public or the				
environment through reasonably foreseeable upset and			x	
accident conditions involving the release of hazardous			^	
materials into the environment?				
c) Emit hazardous emissions or handle hazardous or				
acutely hazardous materials, substances, or waste within			X	
one-quarter mile of an existing or proposed school?				
d) Be located on a site which is included on a list of				
hazardous materials sites compiled pursuant to				
Government Code Section 65962.5 and, as a result, would			X	
it create a significant hazard to the public or the				
environment?				
e) For a project located within an airport land use plan or,				
where such a plan has not been adopted, within two miles				
of a public airport or public use airport, would the project				X
result in a safety hazard for people residing or working in				
the project area?				
f) For a project within the vicinity of a private airstrip,				
would the project result in a safety hazard for people				X
residing or working in the project area?				
g) Impair implementation of or physically interfere with an				
adopted emergency response plan or emergency			X	
evacuation plan?				
h) Expose people or structures to a significant risk of loss,				
injury or death involving wildland fires, including where				x
wildlands are adjacent to urbanized areas or where				
residences are intermixed with wildlands?				

Discussion: The proposed project will consist of the sale of automobiles but also routine maintenance associated with most auto dealerships. Per the application, the operation will include the handling of hazardous materials such as motor oil and other hazardous liquids. DER is responsible for overseeing hazardous materials and has not indicated any particular concern. A hazardous waste plan will be required to be submitted as a part of normal business operations, and will be reviewed by the DER-HazMat Division and the Fire Department. The presence and use of engine fluids and lubricants is expected to have a less than significant impact due to existing, use, disposal, and storage requirements for any business engaging in engine repair.

The site is currently zoned A-2-10 (General Agriculture), but is not currently in agricultural production. However, at one point it could have been used for agricultural operations. A comment referral response received from DER's HAZMAT Division is requiring a Phase 1 Study (and Phase II if deemed necessary) to determine if any underground storage of chemicals took place during past activities. Conditions of approval will be placed on the project to address this. The project site is not within the vicinity of any airstrip or wildlands.

Mitigation: None.

References: Referral Response from Department of Environmental Resources HAZAMT Division dated September 18, 2015; Stanislaus County General Plan and Support Documentation¹

IX. HYDROLOGY AND WATER QUALITY Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Violate any water quality standards or waste discharge requirements?			X	
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?			х	
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?			Х	
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?			х	
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?			х	
f) Otherwise substantially degrade water quality?			X	
g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?				x
h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?				х
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?			х	
j) Inundation by seiche, tsunami, or mudflow?				Х

Discussion: Run-off is not considered an issue because of several factors which limit the potential impact. These factors include the relatively flat terrain of the subject site, and relatively low rainfall intensities in the Central Valley. Areas subject to flooding have been identified in accordance with the Federal Emergency Management Act. The project site itself is located in Zone X (outside the 0.2% floodplain) and, as such, exposure to people or structures to a significant risk of loss/injury/death involving flooding due levee/dam failure and/or alteration of a watercourse, at this location is not an issue with respect to this project.

By virtue of the proposed paving for the building pads, parking, and driveways, the current absorption patterns of water upon this property will be altered; however, current standards require that all of a project's stormwater be maintained on site and, as such, a Grading and Drainage Plan will be included in this project's conditions of approval. As a result of the development standards required for this project, impacts associated with drainage, water quality, and runoff are expected to have a less than significant impact. The project design indicates that stormwater runoff generated by the development of this site will be kept on site and retained underground via French drain system. This project was referred to the Regional Water Quality Control Board (RWQCB) which responded with standards of development and requirements that will be incorporated into this project's conditions of approval.

The project site will receive potable water from the City of Modesto and will be metered and subject to all conservation efforts or ordinances the City maintains for groundwater.

Mitigation: None.

References: Referral response from the City of Modesto dated October 23, 2015; referral response from the Regional Water Quality Control Board dated September 15, 2015; Stanislaus County General Plan and Support Documentation¹

X. LAND USE AND PLANNING Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Physically divide an established community?				X
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?			X	
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?				x

Discussion: The project site has a General Plan Designation of Planned Industrial and currently zoned A-2-10 (General Agriculture). The applicant is requesting to rezone and subdivide the project site from A-2-10 to Planned Development to allow for two automobile dealerships as well as auto related uses. The purpose of the rezoning of the project site is to align the General Plan Designation of Planned Industrial by rezoning the project site to Planned Development. The site falls within the Sphere of Influence of the City of Modesto, and accordingly, a referral was sent to Modesto to ensure consistency with their General Plan for the area. The City commented that the project is consistent with their General Plan and have requested standard conditions of approval to be added. The project will not physically divide an established community nor conflict with any habitat conservation plans.

The proposed parcels located west of the extension of Spyres Way will be developed with low traffic generating autorelated uses and will be subject to General Plan Planned Industrial development policies and standards.

Mitigation: None.

References: Referral response from the City of Modesto dated October 23, 2015; Stanislaus County General Plan and Support Documentation¹

XI. MINERAL RESOURCES Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				х
b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				х

Discussion: The location of all commercially viable mineral resources in Stanislaus County has been mapped by the State Division of Mines and Geology in Special Report 173. There are no know significant resources on the site, nor is the project site located in a geological area known to produce important mineral resources.

Mitigation: None.

References: Stanislaus County General Plan and Support Documentation¹

XII. NOISE Would the project result in:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			X	
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?			х	
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?			x	
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?			Х	
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				x
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				х

Discussion: The Stanislaus County General Plan identifies noise levels up to 70 dB Ldn (or CNEL) as the normally acceptable level of noise for commercial uses. On-site grading and construction resulting from this project may result in a temporary increase in the area's ambient noise levels; however, noise impacts associated with on-site activities and traffic are not anticipated to exceed the normally acceptable level of noise. The site itself is impacted by the noise generated from existing SR 108; however, development of the main area of operations for the proposed development will be set back over 75 feet. Therefore, the development of the proposed project will have less than significant impacts from exposure to excessive noise levels. The site is not located within an airport land use plan.

Mitigation: None.

References: Stanislaus County General Plan and Support Documentation¹

XIII. POPULATION AND HOUSING Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?			х	
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				х

c) Displace substantial numbers of people, necessitating		v
the construction of replacement housing elsewhere?		^

Discussion: The proposed development of the site will serve to extend utilities to the area. However, the sanitary sewer extension will not be in use until the City of Modesto extends its service and accepts the improvements. No housing or persons will be displaced by the project site's development.

Mitigation: None.

References: Stanislaus County General Plan and Support Documentation¹

XIV. PUBLIC SERVICES	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Would the project result in the substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:				
Fire protection?			Х	
Police protection?			Х	
Schools?				Х
Parks?			Х	
Other public facilities?			Х	

Discussion: The County has adopted Public Facility Fees, as well as Fire Facility Fees on behalf of the appropriate fire district, to address impacts to public services from the development of the site. Such fees are required to be paid at the time of building permit issuance. Conditions of approval will be added to this project to ensure the proposed development complies with all applicable fire department standards with respect to access and water for fire suppression. A Comment referral was received from the Salida Fire Protection District requiring the applicant to form or annex into the services district to provide for operational services. A condition of approval added to the project requiring the applicant to perform this prior issuance of any building permit.

Mitigation: None.

References: Referral response from the Salida Fire Protection District dated September 18, 2015; Stanislaus County General Plan and Support Documentation¹

XV. RECREATION	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			X	

b) Does the project include recreational facilities or require		
the construction or expansion of recreational facilities		v
which might have an adverse physical effect on the		^
environment?		

Discussion: The proposed project does not have a residential element and is not anticipated to significantly increase demand for any recreational activities or facilities.

Mitigation: None.

References: Application material, Stanislaus County General Plan and Support Documentation¹

XVI. TRANSPORATION/TRAFFIC Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?			x	
b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?		X		
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?			х	
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			X	
e) Result in inadequate emergency access?			Х	
f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?			х	

Discussion: The project site will have access to State Route (SR) 108, as well as to the extension of Spyres Way. The applicant is anticipating a maximum shift of 30 employees for BMW and up to 20 employees for the second dealership. The applicant is also anticipating two truck trips per day for Valley BMW and one single truck trip per day for the future dealership. The development will also include reciprocal access going north to south between Parcels 1 and 2. The other three parcels are expected to be developed with low traffic generating auto-related uses and have direct access onto Spyres Way.

This project was referred to the Department of Public Works and the California Department of Transportation (Caltrans). Caltrans responded that there is not enough information for them to comment, but, a fair share fee for mitigation of the future signalization of Galaxy Way/McHenry Ave (SR 108) intersection to be collected as estimated from the 2006 Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. The information was forwarded to the

Department of Public Works who responded with the applicant's fair share amount. The fair share fees have been added as a mitigation measure. Additionally, current Public Facility Fees (PFF) will be imposed when the project applies for building permits. Public Works commented further relating to; grading and drainage, access, requirements. These comments will be added to the conditions of approval.

Mitigation:

- 1. In order to mitigate traffic impacts for Parcel 2, the proposed location of the BMW dealership, the subdivider shall pay a fair share contribution of \$19,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 4.79% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
- 2. In order to mitigate traffic impacts for Parcel 1, the proposed location of the KIA dealership, the subdivider shall pay a fair share contribution of \$10,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 2.54% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
- 3. In order to mitigate impacts for Parcels 3, 4 and 5, the subdivider shall pay a fair share contribution for the future signalization of the Way/McHenry Avenue intersection. The fair share amount for these parcels shall be a fair share portion of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

References: E-mail correspondence from Eduardo Fuentes of Caltrans dated October 16 and 19, 2015; Memorandum from Stanislaus County Public Work dated February 4, 2016; Stanislaus County General Plan and Support Documentation¹

XVII. UTILITIES AND SERVICE SYSTEMS Would the project:	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?			х	
b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?			X	
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?			X	
d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?			X	
e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				х

f) Be served by a landfill with sufficient permitted capacity		Y	
to accommodate the project's solid waste disposal needs?		*	
g) Comply with federal, state, and local statutes and		Y	
regulations related to solid waste?		^	

Discussion: As stated earlier, storm drainage is proposed to be handled on-site via underground retention. The project site will extend and connect to an existing City of Modesto water line and will be served by the City. The comment letter received from the City of Modesto identified standards the applicant will be required to meet when extending utility infrastructure. The project site will utilize an onsite septic facility for sanitary services for the time being. In the future the site will connect to the City of Modesto sewer services and will install a dry sewer system during the first site development phase. The dry sewer will meet City of Modesto standards as well. All existing irrigation utilities and electric facilities on site operated by the Modesto Irrigation District will be subject to any easement and/or relocation requirements that the District may prescribe.

Mitigation: None.

References: Referral response from the City of Modesto dated October 23, 2015; Stanislaus County General Plan and Support Documentation¹

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE	Potentially Significant Impact	Less Than Significant With Mitigation Included	Less Than Significant Impact	No Impact
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?			x	
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)			x	
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?			х	

Discussion: Review of this project has not indicated any features which might significantly impact the environmental quality of the site and/or surrounding areas.

¹Stanislaus County General Plan and Support Documentation adopted in October 1994, as amended. Optional and updated elements of the General Plan and Support Documentation: *Agricultural Element* adopted on December 18, 2007; *Housing Element* adopted on August 28, 2012; *Circulation Element* and *Noise Element* adopted on April 18, 2006.

MITIGATED NEGATIVE DECLARATION

NAME OF PROJECT: REZONE AND PARCEL MAP APPLICATION NO. PLN2015-

0027 - VALLEY BMW/KIA

LOCATION OF PROJECT: 4761 McHenry Avenue (State Route 108), between Claribel

Road and East Bangs Avenue, north of the City of Modesto.

APN:046-010-020

PROJECT DEVELOPERS: Valley Lexus/B.E. Fitzpatrick c/o Dennis E. Wilson

Horizon Consulting

P.O. Box 1448 Modesto, CA 95353

DESCRIPTION OF PROJECT: Request to rezone a 9+/- acre parcel from A-2-10 to Planned Development (P-D) and to subdivide the property into five parcels. The project proposes to construct a 30,241 square foot commercial building for an auto dealership during Phase 1 and a 16,009 square foot commercial building during phase 2. The dealership will contain an office and storage area, with sales and service department. The project is within the City of Modesto's Sphere of Influence. The project site is located 4761 McHenry Avenue (State Route 108), between Claribel Road and East Bangs Avenue, north of the City of Modesto. The Planning Commission will consider adoption of a CEQA Mitigated Negative Declaration for the project.

Based upon the Initial Study, dated **February 4, 2016**, the Environmental Coordinator finds as follows:

- 1. This project does not have the potential to degrade the quality of the environment, nor to curtail the diversity of the environment.
- 2. This project will not have a detrimental effect upon either short-term or long-term environmental goals.
- 3. This project will not have impacts which are individually limited but cumulatively considerable.
- 4. This project will not have environmental impacts which will cause substantial adverse effects upon human beings, either directly or indirectly.

The aforementioned findings are contingent upon the following mitigation measures (if indicated) which shall be incorporated into this project.

- 1. In order to mitigate traffic impacts for Parcel 2, the proposed location of the BMW dealership, the subdivider shall pay a fair share contribution of \$19,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 4.79% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
- 2. In order to mitigate traffic impacts for Parcel 1, the proposed location of the KIA dealership, the subdivider shall pay a fair share contribution of \$10,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 2.54% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based

75

EXHIBIT H

on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

3. In order to mitigate impacts for Parcels 3, 4 and 5, the subdivider shall pay a fair share contribution for the future signalization of the Way/McHenry Avenue intersection. The fair share amount for these parcels shall be a fair share portion of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

The Initial Study and other environmental documents are available for public review at the Department of Planning and Community Development, 1010 10th Street, Suite 3400, Modesto, California.

Initial Study prepared by: <u>Jeremy Ballard, Assistant Planner</u>

Submit comments to: Stanislaus County

Planning and Community Development Department

1010 10th Street, Suite 3400 Modesto, California 95354

I:\PLANNING\STAFF REPORTS\REZ\2015\REZ & PM PLN2015-0027 - VALLEY BMW - KIA\CEQA-30-DAY-REFERRAL\MND.DOC

Stanislaus County

Planning and Community Development

1010 10th Street, Suite 3400 Modesto, CA 95354

Phone: (209) 525-6330 Fax: (209) 525-5911

Mitigation Monitoring Plan Adapted from CEQA Guidelines sec. 15097 Final Text, October 26, 1998

February 4, 2016

1. Project title and location: Rezone & Parcel Map Application No. PLN2015-0027

Valley BMW/KIA

4761 McHenry Avenue (State Route 108), between Claribel Road and East Bangs Avenue, north of the

City of Modesto. (APN: 046-010-020).

2. Project Applicant name and address: Valley Lexus/B.E. Fitzpatrick

> P.O. Box 1448 Modesto, CA 95353

3. Person Responsible for Implementing

Mitigation Program (Applicant Representative): Dennis Wilson, Horizon Consulting

4. Contact person at County: Jeremy Ballard, Assistant Planner (209) 525-6330

MITIGATION MEASURES AND MONITORING PROGRAM:

List all Mitigation Measures by topic as identified in the Mitigated Negative Declaration and complete the form for each measure.

XVI. TRANSPORTATION/TRAFFIC

- 1. In order to mitigate traffic impacts for Parcel 2, the proposed location of the BMW dealership, the subdivider shall pay a fair share contribution of \$19,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 4.79% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
- 2. In order to mitigate traffic impacts for Parcel 1, the proposed location of the KIA dealership, the subdivider shall pay a fair share contribution of \$10,160 for the future signalization of the Galaxy Way/McHenry Avenue intersection. The fair share amount for Parcel 2 is 2.54% of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29, 2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.
 - 3. In order to mitigate impacts for Parcels 3, 4 and 5, the subdivider shall pay a fair share contribution for the future signalization of the Way/McHenry Avenue intersection. The fair share amount for these parcels shall be a fair share portion of the cost of the future signal (\$400,000 estimate from the Valley Lexus Traffic Impact Analysis, prepared by KD Anderson and Associates, Inc. revised November 29,

77

2006) based on the Institute of Traffic Engineers Trip Generation, 8th Edition. The fees shall be paid prior to the issuance of the building permit.

Who Implements the Measure: Applicant.

When should the measure be implemented: Prior to issuance of a building permit.

When should it be completed: Prior to issuance of a building permit.

Who verifies compliance: Stanislaus County Planning and Community

Development Department, Building Division.

Other Responsible Agencies:

I, the undersigned, do hereby certify that I understand and agree to be responsible for implementing the Mitigation Program for the above listed project.

Signature on File February 4, 2016

Person Responsible for Implementing Date

Person Responsible for Implementing Mitigation Program

 $(l:\planning\staff\ Reports\rez\space{2015}\ Rez\ \&\ pm\ pln2015-0027\ -\ Valley\ BMW\ -\ KIA\ceqa-30-day-referral\mbox{\backslashMITIGATION\ MONITORING\ Plan.doc)}$

SUMMARY OF RESPONSES FOR ENVIRONMENTAL REVIEW REFERRALS

PROJECT: REZONE AND PARCEL MAP APP NO. PLN2015-0027 - VALLEY BMW/KIA

REFERRED TO:			RESPO	ONDED	RESPONSE			MITIGATION MEASURES		CONDITIONS		
	2 WK	30 DAY	PUBLIC HEARING NOTICE	YES	O _N	WILL NOT HAVE SIGNIFICANT IMPACT	MAY HAVE SIGNIFICANT IMPACT	NO COMMENT NON CEQA	YES	ON	YES	ON
CA DEPT OF CONSERVATION:	v	_	v		_							
Land Resources / Mine Reclamation	X	X	X		X							
CA DEPT OF FISH & WILDLIFE	X	X	X	v	Х			v		v		
CA OPP CTATE OF FARINGUIOUSE	X	X	X	X				X		X	Х	v
CA DWOOD CENTRAL WALLEY RECION	X	X	X					X		X		Х
CA RWQCB CENTRAL VALLEY REGION	X	X	X	X				X		X	X	
CITY OF: MODESTO	X	X	X	Х	V			Х		Х	Х	
COOPERATIVE EXTENSION	X	X	X		Х			.,				
FIRE PROTECTION DIST: SALIDA FIRE	X	Х	Х	X				X		X	X	
IRRIGATION DISTRICT: MID	X	. v	V	Х	V			Х		Х	Х	
MOSQUITO DISTRICT: EASTSIDE MT VALLEY EMERGENCY MEDICAL	X	X	X		X							
	X	X	X		X							
PACIFIC GAS & ELECTRIC	X	X	X		X							
RAILROAD: UNION PACIFIC	X	X	X X	. v	Х			· ·		V		
SAN JOAQUIN VALLEY APCD	X	X		Х	V			Х		Х	Х	
SCHOOL DISTRICT 1: SYLVAN UNION	X	X	X		X							
SCHOOL DISTRICT 2: MODESTO UNION	X	X	X		X							
STAN ALLIANCE	X	X	X		X							
STAN CO AG COMMISSIONER	X	X	X		Х			,,				
STAN CO BUILDING PERMITS DIVISION	X	X	X	Х	V			Х		Х	Х	
STAN CO CEO	X	X	X	v	Х			v		v		
STAN CO ERC	X	X	X	X				X		X	Х	v
STAN CO ERC	X	X	X	Х	V			Х		Х		Х
STAN CO HAZARDOUS MATERIALS	X	X	X	v	Х			v		v		
STAN CO PARKO & PEOPEATION	Х	X	Х	Х	v			Х		Х	Х	
STAN CO PARKS & RECREATION STAN CO PUBLIC WORKS	Х	X	v	v	Х			v	v			
		X	X	Х	v			Х	Х		Х	
STAN CO SHERIFF	X	X	X		X							
STAN CO SUPERVISOR DIST 4: MONTEITH	X	X	X	<u> </u>	X							
StanCOG StanCOG	X	Х		<u> </u>	X							
	X	Х	X	Х				v		Х		
STANISLAUS FIRE PREVENTION BUREAU STANISLAUS LAFCO	X	Х		X	}			X		X	X	
SURROUNDING LAND OWNERS	٨	^	X	^	Х			^		^		
	v	v		<u> </u>								
TELEPHONE COMPANY: ATT US MILITARY AGENCIES	Х	X	Х	<u> </u>	Х							
(SB 1462) (5 agencies)	Х	х	х		х							
USDA NRCS	X	Х	X	 	Х							
WATER DISTRICT: MODESTO	- `	Х			Х							

79 EXHIBIT J