THE BOARD OF SUPE	RVISORS OF THE COUNTY (OF STANISLAUS
DEPT. ENVIRONMENTAL RESOURCES	SKIII BOA	RD AGENDA # ^{B-15}
Urgent Routine 🗸) AGE	NDA DATE February 27, 2001
CEO Concurs with Recommendation YES	NO 4/5	Vote Required YESNO
SUBJECT:		
ACCEPTANCE OF THE U	PDATE ON THE WESTLEY	TIRE FIRE SITE
STAFF RECOMMEN-		
DATIONS: ACCEPT THE UPDATE O	N THE WESTLEY TIRE FI	RE SITE
FISCAL IMPACT.		
There is no fiscal impact.		
BOARD ACTION	N	n. 2001-152
On motion of SupervisorBlom		ervisorCaruso
and approved by the following vote, Ayes: Supervisors:	d, Blom, Simon, Caruso, and	Chair Paul
Noes: Supervisors:		
Abstaining: Supervisor:		
1)X_Approved as recommended		
3)Approved as amended Motion:		

Ł

--- DEADAN M

1171 001

A.	1
Mustine	terraro
Damite	

File No.

1010-08 L

DISCUSSION: The Board requested staff to provide a monthly update on the status of the Westley Tire Fire Site (WTFS). Information for this update is based on conversations, meetings, and memoranda with staff from State Department of Toxic Substances Control (DTSC), Regional Water Quality Control Board (RWQCB), California Integrated Waste Management Board (CIWMB), California Air Resources Board (CARB), San Joaquin Valley Air Pollution Control District (SJVAPCD), and site visits by the Department of Environmental Resources (DER) staff.

Lightning on September 22, 1999, ignited the Filbin Tire pile. The U. S. Environmental Protection Agency (USEPA) extinguished the fire in October of 1999. DTSC, CIWMB and the RWQCB form a multi-departmental team which has been working together to facilitate the site remediation and clean-up, including determining the extent of the contamination and proposed methods of clean up.

This report will be divided into seven segments. These seven segments are: Summary of California Air Resources Board Memorandum, Winterization, Spontaneous Combustion of Tires, General Groundwater Information, Modesto Energy Limited Partnership Facility, Remedial Investigation Activities, Legislative Update Related to California Tire Recycling Act (SB876), and Medical Review.

Summary of Air Resource Board Report

The following information is from a CARB memorandum on the Filbin (Westley) Tire Fire Emergency Response dated January 24, 2000. DER received a copy of this memorandum January 18, 2001. CARB reported that at approximately 8:00 a.m. on September 22, 1999, the CARB was requested to respond to the WTFS. CARB was requested to do emergency air monitoring at and near the Westley Tire Fire. The ARB Emergency Response Team (ERT) was immediately activated. CARB staff deployed and coordinated two-person crews with Miran 1B Real-time infrared portable analyzers monitoring for carbon monoxide and total hydrocarbons. The two-person teams were directed by Incident Command (IC) to observe the plume, conduct surveys of the general area around the fire and respond to reports of smoke in populated areas. The Miran 1B analyzer conducted around the clock monitoring in the area of the tire fire. Miran 1B was staffed 24 hours a day, by two-person teams working eighthour shifts. These teams reported the results directly to the IC. In addition, during off-hours the teams checked the fire site at least once each hour. The air monitoring continued until October 27, 1999.

Monitoring Laboratory Division's (MLD) Air Quality Surveillance Branch initially deployed its "Rover" air monitoring station to the Grayson Elementary School in Westley. The Rover provided extensive monitoring capabilities, including criteria and toxic air pollutants. The following pollutants were monitored: Continuous Particulate Matter10, Continuous black carbon (soot), and continuous carbon monoxide. In addition, MLD performed 24-hour composite monitoring for Benzene, Polyaromatic hydrocarbons, PM 10 mass, Total metals, and Total Carbon.

On September 25, 1999, MLD deployed four PM10 saturation filter samplers at the I-5 & Howard Rd. exit, Vernalis, Grayson, and Newman. Additional sampling locations were added at Patterson High School and the truck stop at I-5. Canister samples of the smoke in the fire plume were also taken.

CARB reported the peak PM10 and Total Carbon concentrations monitored near the fire actually occurred from October 16-17, 1999, when the fire was 75-80% extinguished. At that time, several large forest fires in Colusa and Shasta counties sent heavy smoke into the San Joaquin Valley. This forest fire smoke was held low to the ground by a strong inversion layer. The smoke was so thick that cars in Sacramento were covered with ash (this was from the forest fires). The highest Total Carbon was monitored at the Westley site was on October 16, reflecting the sensitivity of Total Carbon to ambient smoke. The next highest PM10 concentration was monitored at the Livingston site, and may have been biased by the nearby construction and strong winds causing visible blowing dust as reported by the sampling site operator. The CARB believes the best indicator for the actual impact of smoke is Total Carbon rather than PM10.

Winterization

Staff from the CIWMB reports the winterization system installed at the site has performed as expected during the early February rains. They also reported they have not had to pump any water from the new pond designed to contain storm water runoff from Debris Pile #2.

Spontaneous Combustion of Tires

According to staff at the CIWMB and their consultant, they are not aware of any spontaneous combustion tire fires involving "whole tires". The only spontaneous combustion fires are associated with tire shreds. The conditions around these fires were deep piles of shreds, small size rubber

particles (4" by 2" shreds or less), exposed bead wire (steel belts), organic matter, and water. Terry Gray, CIWMB's consultant, provided the following information about the conditions at the WTFS. In conversation with Mr. Gray, he stated he had visited the WTFS. Mr. Gray also stated that in his opinion the conditions at the WTFS are not conducive to spontaneous combustion due to the mixture of dirt and tires. Staff from CIWMB agreed with Mr. Gray's opinion.

General Groundwater Information

DER reviewed our records and requested groundwater well information from the RWQCB for the area within two miles of the WTFS. This information revealed borings for both private and public water wells that were drilled to maximum depths of 322 to 590 feet. These ground water wells are for both domestic and commercial water wells.

Modesto Energy Limited Partnership Facility (MELP):

The MELP waste-tire-to-energy facility is currently non-operational. Should MELP decide to reopen they would need to follow the specific procedures for each agency regulating the facility. Listed below are the procedures, by regulatory agency, for the reopening of the waste-tire-toenergy facility.

According to staff at the CIWMB, MELP still has a valid Waste Tire Site permit. In order for the facility to operate they would have to submit a new Proposal for Operation, a current Fire Prevention Plan and a Vector Control Plan. The facility's new Proposal for Operation would have to meet the specific criteria established by the existing permit. This means that they would not be able to change such things as the location of the tire storage, number of tires stored on site, the number of trucks per day and all other conditions of the permit. If any of the conditions of the operation were to change, this would require a review by CIWMB and may lead to a review of the existing CEQA document.

The RWQCB has not issued the final closure on the two lined ponds, Class II surface impounds, at the MELP site. The RWQCB has not rescinded MELP's current Waste Discharge Requirements (WDR). Since the current WDR has not been rescinded it would be possible for the ponds to be rebuilt using the existing design. To rebuild the ponds MELP would be required to submit to the RWQCB for approval a formal schedule of work to be performed and MELP would need to follow the same construction quality assurance standards originally established in the existing design. In addition, in the future the RWQCB would probably require a water balance

study. If new ponds were to be constructed, then MELP would need to submit a design plan to RWQCB for approval.

According to the SJVAPCD, MELP has submitted an application for Emission Reduction Credits (ERCs) for the shut down of their facility. SJVAPCD deemed the ERC application to be complete on February 5, 2001. If MELP desires to operate their facility, MELP would need to cancel their ERC application and pay all permit fees any associated penalties before they could operate the tire incinerators.

Remedial Investigation Activities:

DTSC is in the process of finalizing the proposal for the next phase of work to be completed at the WTFS. This proposal should be available for public review during the second week of March. Implementation of this plan will take place shortly after the plan is approved.

The next community meeting is scheduled for March 21, at the Grayson Elementary School, 301 Howard Rd. Westley CA at 7:00 p.m. A Fact Sheet will be sent to all interested parties during the first week of March. DTSC will be establishing a repository of information on the WTFS at the Patterson Library.

Debris Pile 3:

The CIWMB has completed the assessment of Debris Pile #3. DTSC has reviewed the results of the samples and has determined that Debris Pile # 3 may be disposed of at Forward Landfill Inc. The estimated size of Debris Pile #3 was 13,000 tons. Transportation for disposal of this material began February 12, 2001. CIWMB is estimating the transportation and disposal of approximately 800 tons per day. This will be the main focus of the activity at the site over the next few weeks.

Update related to California Tire Recycling Act (SB 876)

The California Tire Recycling Act requires the CIWMB to adopt a 5-year plan and update that plan every 2 years, to establish goals and priorities for the waste tire program and each program element. CIWMB is required to submit this plan on or before July 1, 2001 and every two years thereafter, to the appropriate policy and fiscal committees of the Legislature.

On February 20-21, 2001, CIWMB will hold a public meeting on the second draft of the "California Tire Recycling Act SB 876 Five Year Plan". The CIWMB is expecting to act on the five year plan at the March CIWMB Board meeting. Staff has and will continue to attend these public meeting.

Under this five-year plan CIWMB will be awarding new contracts to carry out long-tern remediation of the Royster and Westley Tire Fire sites. The plan states: "Remediation of these sites will require more than just than removal of illegal waste tires. It will involve the remediation of contaminated debris, partially burned tire, as will as extensive site restoration. As part of the long-term remediation of these sites, it will be necessary to enter into interagency agreements to reimburse costs incurred by other public agencies involved in overseeing the remedial actions at these sites".

The proposed funding for Long-Term Remediation Projects is as follows: \$6 million per year for FYs 01/02 and 02/03; \$4 million for FY03/04; \$2 million per year for FYs 04/05 and 05/06. The total proposed funding for these projects would be \$20 million. The CIWMB is estimating the cost of the remediation project at the WTFS to be \$10 million.

The Tire Recycling Act Five-Year Budget Projection is as follows: \$28.9 million for FY 01/02; \$31.2 million for FY02/03; \$31.3 million for FY 03/04; \$29 million for FY 04/05; \$29.3 million for FY 05/06. Approximately \$78.7 million of the approximate \$149.7 million will be used to fund clean up and enforcement.

Medical Review

None.

Dr. Walker will provide an overview of the medical review. A copy of the presentation is Attachment A.

POLICY ISSUE:

This item is informational in nature. Its purpose is to keep the Board informed on an issue related to the Board's priority of a safe, healthy community.

STAFFING IMPACT:

Public Health Response to the Westley Tire Fire

John Walker, MD Public Health Officer Stanislaus County February 27, 2001

Chronology of Public Health Interventions 1999

- 9/22. Tire Fire begins.
- 9/23. Public Health representative assigned to the Emergency Operations Center (EOC).
- 9/29. Public Health nurses begin standardized telephone inquiry service.
- 10/1. Beginning of nine Public Health clinics in Patterson and Westley.
- 10/6. Fax ALERT to physicians sent by the Stanislaus County Medical Society.
- 10/27. Tire Fire extinguished.
- **10/29.** Last call to the Public Health Nurse inquiry service.

11/29. Last Public Health clinic in Patterson.

Table 2: Source of Calls to Public Health Nurses

	Number	Percent
West County	55	64.0%
Other	31	36.0%
Total	86	

Table 3: Symptoms Reported to Public Health Nurses

	Number	Percent
Headache	37	46.8%
Coughing	30	38.0%
Difficulty Breathing	22	27.8%
Burning Eyes	18	23.8%
Sore Throat	17	21.5%
Wheezing	16	20.3%
Bloody Nose	11	13.9%
Nausea	11	13.9%
Vomiting	4	5.1%
Runny Nose	2	2.5%

Table 4: Prior Medical Conditions of Callers to Public Health Nurses

	Number	Percent
None	42	49.0%
Asthma/Allergies/Respiratory	35	41.0%
Other	9	10.0%

Table A: PUBLIC HEALTH EXAMINATIONS Patients' City of Residence

	Number	Percent
Patterson	124	61.4%
Grayson	36	17.8%
Westley	25	12.4%
Newman	5	2.5%
Linden	1	0.5%
Vernalis	1	0.5%
Unknown	10	5.0%
Total	202	

Table B: Date Patients were seen at Public Health Clinics

Table C: Age Grouping

	Number	Percent
00-04	25	12.4%
05-09	55	27.2%
10-14	26	12.9%
15-19	16	7.9%
20-24	1	0.5%
25-29	6	3.0%
30-34	20	9.9%
35-39	15	7.4%
40-44	10	5.0%
45-49	12	5.9%
50-54	4	2.0%
55-59	3	1.5%
60+	8	4.0%
Total	202	

Table D: Patients Chief Complaint

	Number	Percent
Coughing	110	54.5%
Sorethroat	82	40.6%
Headache	60	29.7%
Runny Nose	51	25.2%
Eye Discomfort	41	20.3%
Bloody Nose	25	12.4%
Difficulty Breathing	16	7.9%
Dizzy	10	5.0%
Chest Tight	8	4.0%
Congested	8	4.0%
Fever	8	4.0%
Nausea	7	3.5%
Nose Discomfort	7	3.5%
Ear Discomfort	7	3.5%
Diarrhea	7	3.5%

		and the second se
Vomiting	5	2.5%
Difficulty Sleeping	5	2.5%
Fatigue	5	2.5%
Fussy	5	2.5%
Stomach Pain	5	2.5%
Wheezing	2	1.0%
Allergies	2	1.0%
Asthma	2	1.0%
Back Pain	2	1.0%
Sneezing	2	1.0%
Chest Pain	1	0.5%
Cold	1	0.5%
Cramps	1	0.5%
Hair Falling Out	1	0.5%
Rash	1	0.5%
Total	202	

Table E: Clinical Assessment

	Number	Percent
Allergy	89	44.1%
Upper Respiratory	86	42.6%
Lower Respiratory	40	22.8%
Other	20	9.9%
Well Child	17	8.4%
Total	202	

Follow-Through Public Health Activities 2000-2001

of 13

Page

A

ATTACHMENT

- 2/15/00. Letter by Reagan Wilson requesting longitudinal health studies by the Ca. Dept. of Health Services.
- 5/2/00. Response to Mr. Wilson from the Ca. Dept. of Health Services (DHS).
- 11/13/00. New Public Health Officer(PHO).
- 1/8/01. Tire Fire site visit by PHO.
- 2/2/01. Informal meetings in Sacramento.
- 2/21/01. Conference call with DHS and Ca. EPA .
- 2/22/01. Meeting with Public Health and
 - Environmental officials in San Joaquin County.
- 3/21/01. Community meeting in Westley.

Excerpt from 5/2/00 DHS letter

"After careful consideration, the EHIB (Environmental Health Investigations Branch) has concluded that such a study would be unlikely to detect long term health effects in the exposed population."

Table 1: Calls to Public Health Nurses

- 38(NG-97).1

12.37

Air Resources Board

Governor

Alan C. Lloyd, Ph.D. Chairman 2020 L Street • P.O. Box 2815 • Sacramento, California 95812 • www.arb.ca.gov

Winston H. Hickox Agency Secretary

MEMORANDUM

TO: Michael P. Kenny Executive Officer

FROM: James J. Morgester, Chief Compliance Division

DATE: January 24, 2000

SUBJECT: Filbin (Westley) Tire Fire Emergency Response

On September 22, 1999, at the request of the Stanislaus County Department of Environmental Health and the State Office of Emergency Services (OES), Air Resources Board staff responded to a tire fire located just west of the town of Westley

in Stanislaus County. The Air Resources Board Compliance Division Emergency Response Team was requested to assist in this emergency by conducting onsite ambient air monitoring of pollutants in the smoke plume that could possibly impact nearby residents.

Owner/Operator

The Filbin (Westley) Tire Facility is located just south of the San Joaquin County line, 1/4 mile west of I-5 near Westley in Stanislaus County, 20 miles west of Modesto. Five million tires were reportedly involved in the fire at the facility. The facility, operated by the Oxford Tire Re-cycling Co., is on approximately 30 acres (the burning area was initially about 15 acres) owned by the Cal-Neva Ranch Company, LLC, and also known as the Filbin Land and

Filbin (Westley) Tire Fire

Cattle Co. The facility supplies tires to fuel the Modesto Energy LP tire burning cogeneration plant located near the pile. Figure 2 shows a map of the fire area.

California Environmental Protection Agency

Printed on Recycled Paper

Background

The tire fire started as a result of lightning strikes during an early morning storm on September 22, 1999. The fire was initially reported at 3:59 a.m. from a call to 911 dispatch, with the West Stanislaus Fire Department responding to the remote scene by 4:12 a.m.

I was contacted by the State Office of Emergency Services at approximately 8 a.m. on September 22 and asked to respond to a request from the Stanislaus County Environmental Health Department for emergency air monitoring at and near a fire involving a large used tire dump near Westley, California. The ARB Emergency Response Team (ERT) was immediately activated. Gary Zimmerman and John Marconi of the CD staff deployed and coordinated two-person crews with Miran 1B real-time infrared portable analyzers monitoring for CO and total hydrocarbons (THC). The two-person teams were directed by the Incident Command to observe the plume, conduct surveys of the general area around the fire and respond to reported smoke in populated

Aerial View of Tire Pile Before and After

areas. During the course of the response, Miran 1B monitoring in the area of the tire fire was conducted around the clock by these two-person teams working eight-hour shifts. They reported the monitoring results directly to the Incident Command (IC), and monitored around the fire area as directed by the IC. In addition, during off-hours the teams checked the fire site at least once each hour. The Compliance Division staff who participated in the field monitoring were:

- Hardip Ahluwalia Kerry Albert Trevor Anderson Pete Campos Nestor Castillo
- Basharat Iqbal Britt Floyd Walter Gothberg Herman Lau Francis Mateo
- Simion Okoroike Eric Patton Terone Preston Fred Schmidt Mark Tavianini

Raak Veblen Sue Wyman In addition, the Monitoring and Laboratory Division (MLD) was asked to set up fixed air monitoring equipment at several sites requested by the Incident Command. The MLD staff who participated in the emergency response effort were:

MLD Division Office Michael Poore Jane Park

Engineering & Laboratory Branch

Organic Laboratory Hieu Le Ben Chang Dave Hartmann

Ferry Niyati Evaluation Section Bob Okamoto

Bruce Joab

Inorganic Laboratory Russell Grace Bill Davis Lyman Dinkins George Dunstan Karen Fletcher Jose Orozco Samantha Scola Dan Tackett

Marlene Ramatici

Air Quality Surveillance Branch Bill Oslund

Air Monitoring – North Larry Molek Ken Breitwieser Lowell Jarvis John Lawson Bob Caselton John Crumpler Joe Rohr Johnny Foston Air Monitoring - Central Peter Ouchida Diane Arnold Ron Lewis Steve Rider Jack Romans

Special Purpose Monitoring

Ken Stroud Reggie Smith Ron Barros James Frasche Greg Frye Harlan Quan Klaus Scott Mac McDougall Pat Vaca Chateau Vaughn

The fire was finally put out on October 27, 1999 by the unprecedented efforts of a U.S. EPA contractor. The fire was initially predicted to burn for months, but after a pool of pyrolitic oil distilled from the burning tires caught fire, the EPA called in an oil fire fighting specialist contractor from Texas. Using a new technique of smothering the fire with massive amounts of foam and carefully separating the individual tires with bulldozers, the EPA contractor guelled the fire in less than three weeks.

Pyrolytic Oil Accumulated in Pond

Foamed Tires

Lawrence Livermore National Lab NARAC Plume Modeling

At the request of the Stanislaus County Office of Emergency Services (OES), the National Atmospheric Release Advisory Center (NARAC) predicted the locations of smoke from the tire fire. NARAC predicted the winds and the dispersion of smoke from the fire, and provided the first set of plots to the Stanislaus OES at approximately 2:15 p.m. on 9/22. Additional requests for plots were fulfilled for the California Air Resources Board, the Bay Area Air Quality Management District, the Governor's Emergency Operations Center, and several media representatives. Later sets of plots extended the forecast period farther into the future. The final plot shown in Figure 1 indicates the calculation of smoke particles deposited on the ground over the entire initial 72-hour period of the fire.

Figure 1

NARAC meteorologists used the U.S. Navy's COAMPS model to predict highresolution winds over the area of concern; then NARAC's own dispersion models were used to predict the areas covered by smoke. NARAC assumed that the smoke plume rose 2500 meters (about 7,500 feet) above the fire for the first 18 hours after ignition, and then lowered to 600 meters (about 1,800 feet) for the remainder of the simulation period. Because the exact quantity of material emitted by the fire into the atmosphere is unknown, the plot is contoured in relative concentrations, with contour intervals specified in factors of ten (smoke within the innermost, darkest shaded contour is at least ten times more concentrated than smoke within the next surrounding contour). Therefore, these plots do not show health effects; rather they show the relative density of smoke near the ground.

ARB Ambient Air Monitoring Response

Our 24-hr surveillance and air monitoring at the Westley tire fire continued until October 27, 1999 when the fire was declared to be extinguished. Ambient carbon monoxide and total hydrocarbon concentrations were essentially zero or at typical background levels at all locations surveyed with the Miran 1B. The field staff observed few incidents of the smoke plume laying down on the ground or fumigating. However, many local residents complained of

MLD's Rover Monitoring Platform Near Grayson School (Westley-Livingston)

adverse health effects from periodic ground-level impacts by the smoke. From September 22 until October 8 we had three, two-person teams at the fire working eight-hr shifts around the clock, and an on-call supervisory coordinator. From October 8 to October 27, field surveillance was reduced to one person working an eight-hour shift, but on-call for 24 hours.

MLD's Air Quality Surveillance Branch initially deployed its "Rover" air monitoring station to the Grayson Elementary School in Westley, about 5.5 miles east of the fire site to determine exposures to the population in Wesley. The Rover provided extensive monitoring capabilities, including criteria and toxic air pollutants. The following pollutants were monitored:

Continuous PM₁₀ mass by TEOM (Taper Element Oscillating Microbalance) Continuous black carbon (soot) concentration by Aethalometer Continuous carbon monoxide 24-hour composite monitoring for: Benzene Polyaromatic Hydrocarbons (i.e., benzo(a)pyrene) PM 10 mass Total metals by XRF Total Carbon

In response to a request from the Incident Command for additional monitoring stations around the fire, on September 25, MLD deployed four PM₁₀/saturation filter samplers at the I-5 & Howard Rd. exit, Vernalis, Grayson and Neuman. (During a teleconference with the responding agencies late afternoon Friday (9/24), DHS and OEHHA requested 5-6 additional Rover-type monitoring stations be deployed around

the fire. MLD staff verified that they had no more such monitoring resources available, but could probably field some additional PM₁₀ samplers. State OES representative Tracy Vardas stated that Stanislaus Co. Environmental Health staff wanted any additional samplers to be set up at the above priority sites.)

Figure 2 - Area Map Showing Air Monitoring Sites (= site)

In response to public demands for more monitoring sites, MLD later set up additional sampler sites at Patterson High School and near a truck stop across I-5 from the fire site. The fixed monitoring sites are shown mapped out in Figure 2.

The final MLD monitoring results are shown in Appendix 1. Detailed descriptions of the monitoring sites follow in Appendix 2. An analysis of the pyrolitic oil headspace constituents is shown in Appendix 3.

In addition, a U. S. EPA contractor at ARB's request obtained canister samples of the smoke in the fire plume. Those samples showed 570 ppb and 338 ppb of butadiene, and 930 ppb and 557 ppb of benzene, respectively. For comparison, the OSHA Permissible Exposure Levels (8-hr. average) for butadiene and benzene are 1000 ppm and 1 ppm, respectively. The air monitoring data shows slightly elevated PM₁₀ and toxic (benzene/butadiene) air contaminant concentrations occurred at the start of the fire. Overall, no extraordinarily high readings (for the area) occurred for any pollutants monitored. Typically, for the San Joaquin Valley air basin, 24-hour PM₁₀ concentrations monitored during most of the fire exceeded the State ambient air quality standard of 50 µg/m³. As shown in Figure 3, during most of the same time period PM₁₀ readings near

the fire were comparable at Modesto (as well as Fresno, Visalia and Bakersfield). However, all air monitoring conducted, particularly the Total Carbon (soot) data collected at the fixed monitoring sites, does not show any significant ground-level impacts that could be clearly attributable to the fire. The peak PM₁₀ and Total Carbon concentrations monitored near the fire actually occurred from 10/16-17 when the fire was 75-80% extinguished. At that time, several large forest fires in Colusa and Shasta Counties sent heavy smoke into the San Joaquin Valley, held low to the ground by a strong inversion layer. The smoke was so thick that cars in Sacramento were covered with ash. Total Carbon monitored at the Westley-Livingston site peaked at 29.5 µg/m³ on 10/16, reflecting the sensitivity of Total Carbon sampling to ambient smoke. The next highest PM₁₀ concentration was monitored on 9/26 at the Livingston site, and may have been biased by nearby construction and strong winds causing visible blowing dust as reported by the sampling site operator.

From our experience in the Tracy tire fire last year, Total Carbon, rather than total or PM₁₀ particulate matter, is the best indicator of any fire's actual impact.

Atmospheric particulate matter, a complex mixture of chemicals, is partially made up of organic and elemental carbon. The elemental carbon (soot) is a product of combustion, and typical emissions sources are agricultural burning, wildfires, motor vehicles, wood stoves, fireplaces, charcoal broilers, etc. The Total Carbon (organic and elemental) contributions to total PM₁₀ concentrations in the northern San Joaquin Valley are generally between 5 - 10 μ g/m³ during the summertime, and 40 - 80 μ g/m³ during the wintertime. The higher wintertime concentrations are due to lower temperatures, inversions and the use of fireplaces.

Figure 3 graphically compares the daily Total Carbon and total PM₁₀ concentrations monitored during the height of the fire, and illustrates little, if any, impact

of the fire smoke on particulate matter levels at the sampling site. However, as can be seen in the 1-hr. maximum PM_{10} readings, this does not mean that the tire fire smoke did not cause short-term impacts or impacts in other areas where we didn't have a monitoring site. Regardless of our monitoring results, many local residents scattered around the area reported adverse health effects from periodic ground-level impacts by the smoke that may not have shown up in our data.

ARB's Emergency Response Costs

The total estimated cost of ARB's response to this emergency is \$145,000.

APPENDIX 1 AIR RESOURCES BOARD LABORATORY RESULTS

7

WESTLEY TIRE FIRE

Sample results include the following compounds:

Compound	Abbreviation	Federal Standards	Annual Average Comparison
Carbon Monoxide	CO	20 ppm (1Hr)	
Black Carbon	Black Carbon		
High Volume SSI PM10 Mass	Hi-Vol SSI PM10 Mass		
High Volume SSI PM10 Total Carbon	PM10 Total Carb		
Mini Vol Saturation Sampler PM10 Mass	Mini-Vol PM10 Mass Sat		
TEOM PM10	PM10 Teom	150 ug/m3 (24 Hr)	
· · · · · · · · · · · · · · · · · · ·	Ambient Toxic Volatile Organic Cor	npounds VOC	
Butadiene	Buta		1997 Modesto Max. 0.6/Avg155
Benzene	Benz		1997 Modesto Max. 2.2/Avg462
Polycyclic Aromatic Hydrocarbons	PAH		
Benzo (b) fluoranthene	BbF		1997 Modesto Max. 3.3/Avg270
Benzo (k) fluoranthene	BkF		" "Modesto Max. 1.30/Avg115
Benzo (a) pyrene	BaP		"" " Modesto Max. 2.20/Avg. 191
Dibenz (a,h) anthracene	DahA		" "Modesto Max. 0.25/Avg034
Benzo (ghi) perylene	BghiP		" "Modesto Max. 5.00/Avg543
Indeno (1,2,3-cd) pyrene	IcdP		" "Modesto Max. 3.10/Avg293
	Resultant Wind Speed	RWS	
Resultant Wind Direction	RWD		

All PAH Results are reported in ng/m3 All VOC Results are reported in ppb

All Mini Volume PM10 Results are reported in ug/m3

All High Volume PM10 Results are reported in ug/m3

All TEOM PM10 Results are reported in ug/m3

All Carbon Monoxide Results are reported in ppm

All Black Carbon Results are reported in ug/m3

All Resultant Wind Speed Results are reported in knots

All Resultant Wind Direction Results are reported in degrees

All PAH's are 24-hour Average Results except for sampling date 9/22/99 results from approximately 4-hr average.

	SAMPLING DATE											
COMPOUNDS/ ELEMENTS	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30	10/1	10/2	10/3
Westley- Liviningston												
24-Hr Average	ΝΔ	ΝΔ	ΝΔ	NA	NA	NA	NA	ΝΔ	ΝΔ	3	1	
1-Hr Maximum	NA	NA	NA	NA	NA	NA	NA	NA	NA	8	3	3
Westley- McCracken												
Black Carbon												
²⁴ -Hr Average	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	3
1-Hr Maximum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2	6
Westley-Livingston												· · · · · · · · · · · · · · · · · · ·
Carbon Monoxide												
24-Hr Average	0.0	0.3	0.2	0.7	0.2	0.1	0.1	0.1	0.3	0.1	0.0	0.0
1-Hr Maximum	0.0	0.4	0.4	0.4	0.5	0.2	0.3	0.2	0.1	0.3	0.1	0.1
METEOROLOGY								L.				
Westley-Livingston												
RWS			.			<u>.</u>				···· I		
24-Hr Average	2	4	4	4	11	15	9	4	4	5	4	3
1-Hr Maximum	3	9	9	11	17	18	17	6	5	8	8	5
RWD						l					<u> </u>	
24-Hr Average	146	282	272	235	294	301	279	251	253	258	259	251

	SAMPI	LING DAT	E				<u>2009</u> 2010 2010 2010 2010 2010 2010 2010 201				<u></u>			
COMPOUNDS/ ELEMENTS	10/4	10/5	10/6	10/7	10/8	10/9	10/10	10/11	10/12	10/13	10/14	10/15	10/16	10/17
Westley- Liviningston														
Black Carbon		· · · · · · · · · · · · · · · · · · ·									+		1.	1,
24-Hr Average	1	1				2					2	0		1
1-Hr Maximum	3	2	1	1	4	5	3	3	2	4	4	2	5	2
Westley- McCracken														
Black Carbon					_									
24-Hr Average	2	2	2	2	2	2	1	1	1	1	1	1	1	1
1-Hr Maximum	4	5	11	4	8	7	4	4	8	6	10	4	8	4
Westley-Livingston														
Carbon Monoxide														T
24-Hr Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1-Hr Maximum	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.1
METEOROLOGY			I		I	L					, <u></u> ,		_1	.I
Westley-Livingston														1
RWS				·····	I			······•	····••					
24-Hr Average	5	5	6	7	2	3	2	4	5	4	3	12	12	8
1-Hr Maximum	10	12	17	14	4	6	4	5	10	9	9	18	17	13
								<u> </u>						1
RWD														
24-Hr Average	302	240	270	261	160	236	150	191	293	295	228	308	313	308

	SAMPL	ING DATE	3								······································			
COMPOUNDS/ ELEMENTS	10/18	10/19	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29	10/30	10/31
					- r								_	
Westley-														
Liviningston			<u> </u>				<u> </u>					<u> </u>		L
Black Carbon		1.						- <u>r</u>			· · · · · · · · · · · · · · · · · · ·	- I	T	·
24-Hr Average	2	1	2	2		3	1							
1-Hr Maximum	3	4	6	3	3	3	2							
Weetler		-												
McCracken														
Black Carbon						"L							.L	1
24-Hr Average	1	1	2	3	1	2	0		1	1			1	
1-Hr Maximum	6	4	5	4	4	4	2					1		
	1													
Westley-Livingston											-		1	
Carbon Monoxide									<u> </u>	- 1				I.m
24-Hr Average	0.1	0.1	0.1	0.1	0.1	0.1	0.0					1	<u> </u>	
1-Hr Maximum	0.1	0.2	0.2	0.2	0.1	0.1	0.1							
METEOROLOGY										-d	-		4	L
Westley-Livingston						1					1			
RWS				····									I	I
24-Hr Average	3	2	2	2	2	4	4	1				1	[
1-Hr Maximum	7	5	4	4	4	8	6							
DWD		1				· .								
KWD	0.05	1.0	1.0.10	1			1000	- <u>1</u>					······	r
24-Hr Average	207	171	242	164	263	287	276							

						SAMPL	ING DATE					
COMPOUNDS/ ELEMENTS	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30	10/1	10/2	10/3
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				<u> </u>		
Westley-												
McCracken			<u> </u>									
RWS		1	1			1			1 37.4		1.2	
24-Hr Average	NA NA								NA		3	2
1-Hr Maximum	NA			NA		NA					/	6
RWD	+		l		<u> </u>	l		1	<u> </u>	l.	<u>1</u>	l
24-Hr Average	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	229	160
Westley Livingston	1											
DAH		1							l			
RhF	< 05	205	< 08	< 38	< 05	< 05	< 05	NA	59	0.85	< 05	< 05
BkF	< 05	< 05	< 05	< 12	< 05	< 05	< 05	NA	0.07	0.05	< 05	< 05
Ban	< 05	< 05	< 05	< 24	<.05	<.05	<.05	NA	0.15	0.12	< 05	< 05
DahA	< 05	< 05	< 05	< 05	< 05	< 05	< 05	NA	< 05	< 05	< 05	< 05
BohiP	<.05	<.05	<.06	<.36	<.05	<.05	<.05	NA	0.32	0.41	<.05	<.05
IcdP	<.05	<.05	<.08	<.27	<.05	<.05	<.05	NA	0.71	0.78	<.05	<.05
Westley-Livingston	<u> </u>											
Hi-Vol SSI PM10 Mass												
24-Hr Average	95.8*	78.1	81.1	180.5	180.4	95.2	135.9*					
Except * 4-Hr Avg.					_							
Patterson H.S.								1				
Hi-Vol SSI PM10			1			1		1				
Mass												
24-Hr Average Except * 4-Hr Avg.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

•

.

							SAMPLIN	NG DATE			4		,	
COMPOUNDS/ ELEMENTS	10/4	10/5	10/6	10/7	10/8	10/9	10/10	10/11	10/12	10/13	10/14	10/15	10/16	10/17
Westley-														
McCracken														
RWS		- r					·····	- r	· · · ·	·				
24-Hr Average	4	4	6	12	4	6	4	4	6	6	5	16	15	10
1-Hr Maximum	9	12	17	19	8	12	11	7	13	9	11	21	20	16
RWD							I I							1
24-Hr Average	234	192	202	283	139	210	169	232	267	271	201	315	310	305
Westley-Livingston									-	-	-			
PAH							.			I	L		_1	-L
BbF	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<1.5	<1.5	<1.5
BkF	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<1.5	<1.5	<1.5
Вар	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.1.5	<1.5	<1.5
DahA	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<1.5	<1.5	<1.5
BghiP	<.05	<.05	<.05	<.05	<.05	<.05 ·	<.05	<.05	<.05	<.05	<.05	<1.5	<1.5	<1.5
IcdP	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<1.5	<1.5	<1.5
Patterson H.S.														
PAN	NIA	NA	0.56	0.12	0.24			NTA	NIA	0.22	0.22	0.70		
			0.50	0.13	0.34					0.32	0.33	0.70		NA
ВКР			0.16	<.05	0.09	NA	NA	NA	NA	0.09	0.09	0.20	NA	NA
Bap	NA NA	NA	0.24	0.06	0.12	NA	NA	NA	NA	0.13	0.17	0.37	NA	NA
DahA	NA	NA	<.05	<.05	<.05	NA	NA	NA	NA	<.05	<.05	<.05	NA	NA
BghiP	NA	NA	0.34	0.10	0.22	NA	NA	NA	NA	0.23	0.27	0.43	NA	NA
IcdP	NA	NA	0.39	0.08	0.27	NA	NA	NA	NA	0.23	0.26	0.58	NA	NA
Hi-Vol SSI PM10 Mass														
Patterson H.S.					T	1			<u> </u>		<u> </u>		Τ	
24-Hr Average Except * 4-Hr Avg.	NA	NA	42.7	67.2	61.5	NA	NA	NA	NA	NA	179.6	135.7	NA	NA

•

	1	SAMPLING DATE 0/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29 10/30 10/31													
COMPOUNDS/ ELEMENTS	10/18	10/19	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29	10/30	10/31	
Westley-															
McCracken															
RWS															
24-Hr Average	4	4	5	4	4	3	4								
1-Hr Maximum	8	9	10	10	8	7	10								
				1		1									
RWD			· · ·	· · · · · · · · · · · · · · · · · · ·											
24-Hr Average	192	187	206	174	198	239	197								
Westley-Livingston						_ <u></u>					_	·	1	<u> </u>	
РАН								<u> </u>						y	
BbF															
BkF														L	
Вар															
DahA															
BghiP															
IcdP												<u> </u>	L	l	
<u></u>															
Patterson H.S.	ļ										-	ļ		<u> </u>	
PAH														_	
Bbf	0.89	0.35	0.24				ļ								
BkF	0.23	0.08	0.05				\								
Вар	0.35	0.10	0.11												
DahA	0.09	<.05	<.05								_				
BghiP	0.58	0.27	0.24								_				
IcdP	0.61	0.23	0.18												
Hi Vol SSI PM10						<u> </u>		· · · · · · · · · · · · · · · · · · ·							
Mass															
Patterson H.S.				· · · ·							·········	······			
24-Hr Average	110.6	118.8										T			
Except * 4-Hr Avg.	I			<u> </u>			1					1	<u> </u>	l	

		-				SAMPL	ING DATE	3				
COMPOUNDS/ ELEMENTS	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30	10/1	10/2	10/3
Mini-Vol PM10	1			<u>.</u>				· · · · · · · · · · · · · · · · · · ·				
Mass Saturation												
24-Hr Average	1	T	1					1	·	1	1	-
Westley-Livingston	NA	NA	NA	NA	NA	NA	NA	NA	82.9	59.7	52.4	53.3
Westley-Grayson	NA	NA	NA	NA	79.2	10.5	123.6	51.8	81.1	89.5	61.6	38.1
Westley-I5/Howard	NA	NA	NA	NA	57.3	98.7	6.6	73.1	65.8	58.7	59.8	57.2
Westley-Newman	NA	NA	NA	NA	NA	14.1	122.5	56.2	74.2	59.8	59.5	29.6
Westley-Vernalis	NA	NA	NA	NA	58.4	17.6	53.3	72.4	55.4	54.9	57.2	20.1
Westley-Livingston												_
PM10 Total Carb												
24-Hr Average	5.4*	9.7	7.9	17.3	8.0	4.6	4.3*	NA	14.9	10.4	5.1	3.9
Except * 4-hr Avg,											-	
Westley-Livingston												
PM10 Teom												
24-Hr Average	NA	68.2*	61.3	81.6	169.4	116.3	84.2	50	90.7	87.4	57.3	38.8
* 11-Hr Avg.												
1-Hr Maximum	NA	82.0	110	155	557.4	319.9	191.7	150	314.1	205.7	82.9	55.4
Westley- McCracken												
PM10 Teom												
24 Ur Average	NA	NA	NA		NA	ΝΔ	ΝΔ		NA	NA	24.6	207
											24.0	20.7
I-Hr Maximum		NA	NA	NA		NA			NA	NA	40.1	79.2
Westley-Livingston												
VOC												
Butadiene	0.48	<.04	<.04	<.04	<.04	<.04	<.04	NA	0.04	<.04	0.04	<.04
Benzene	2.88	0.35	0.34	0.40	< 2	<.2	0.66	NA	.70	64	0.36	0.31

							SAMPLI	NG DATE						
COMPOUNDS/ ELEMENTS	10/4	10/5	10/6	10/7	10/8	10/9	10/10	10/11	10/12	10/13	10/14	10/15	10/16	10/17
Mini-Vol PM10 Mass Saturation		· · · · · · · · · · · · · · · · · · ·		•										
24-Hr Average														
Westley-Livingston	81.6	25.2	22.9	51.7	23.9	88.8	50.4	12.6	Invalid	51.8	23.5	43.1	82.9	54.7
Westley-Grayson	34.1	25.7	23.2	34.4	60.2	42.0	83.2	79.4	71.4	73.9	76.2	70.7	107.7	113.3
Westley-I5/Howard	39.0	23.3	45.6	62.5	48.1	33.9	9.6	23.8	109.3	76.9	106.5	47.4	105.4	49.6
Westley-Newman	38.3	24.2	25.9	51.7	34.0	28.9	46.7	49.6	181.4	77.6	18.9	57.7	150.8	65.4
Westley-Vernalis	27.1	15.6	18.5	16.3	13.2	56.0	56.5	51.8	35.6	52.2	64.5	74.2	118.0	52.0
Westley-Livingston			-											
PM10 Total Carb														
24-Hr Average Except * 4-hr Avg	<1	<1	<1	2.8	8.2	3.8	6.0	<1	7.2	5.7	8.2	2.8	29.5	14.9
Елеорт тапть,				-			-							
Patterson H.S.	NA	NA	3.8	6.3	8.7	NA	NA	NA	NA	NA	16.4	4.3		
PM10 Total Carb														
Westley-Livingston														
PM10 Teom														
24-Hr Average	46.1	27.2	31.4	48.6	81.0	65.2	59.2	66.1	59.5	76.0	80.6	185.5	182.1	66.9
1-Hr Maximum	97.3	65.2	158	94.2	219	102.8	87.6	106.3	179.3	162.7	157.3	430.5	406.0	162.4
Westley- McCracken														
PM10 Teom									_					
24-Hr Average	37.1	22.1	51.5	145	93.1	73.5	63.0	91.8	98.9	108.3	107.2	312.7	212.3	62.9
1-Hr Maximum	76	58.5	138	574	205	145	95.3	197.8	295.5	215.7	287.3	643.5	499.6	103.7
Westley-Livingston														
VOC														
Butadiene	<.04	<.04	0.007	0.056	0.030	0.043	<.04	<.04	0.05	<.04	<.04	<.04	0.05	0.04
Benzene	62	0.20	111	0.32	0.68	0.56	0.66	0.29	0.70	0.46	0.48	<.2	0.41	0.68
DUILONG	1 2.2	0.20	1	0.0.0	0.00	1 0.00	0.00			1			1 2	

[<u></u>		SAMPLI	NG DATE						- 1.4k 20- e
COMPOUNDS/ ELEMENTS	10/18	10/19	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29	10/30	10/31
Mini-Vol PM10 Mass Saturation														
24-Hr Average				Т						1				7
Westley-Livingston	82.6	99.4	133.2	129.5	52.0	63.6								
Westley-Grayson	102.4	287.1	169.4	145.4	103.6	67.1								
Westley-I5/Howard	78.3	80.3	114.2	90.0	87.2	53.6								
Westley-Newman	92.7	105.0	116.5	104.7	105.0	61.6								
Westley-Vernalis	85.7	83.4	98.7	80.6	NA	46.1								
Westley-Livingston														
PM10 Total Carb														
24-Hr Average			}											
Except 4-In rivg,										+				
Westley-Livingston					-							-		
PM10 Teom	1													
24-Hr Average	99.2	94.3	126.9	135.1	103.3	89.8	34.5							
1-Hr Maximum	275.3	175.1	312.4	271.5	227.5	185.0	79.9							
Westley- McCracken														
PM10 Teom												_		
24-Hr Average	101.2	94.8	134.0	97.8	88.1	60.9	19.8					-		
1-Hr Maximum	228.5	354.6	267.2	206.3	198.2	140.5	60.4		-	1				+
Westley-Livingston									-		-			
VOC			-											1
Butadiene	0.04	0.17	0.063	0.064	<.04	0.050								
Benzene	0.80	0.98	1.11	0.81	0.83	0.54								

WESTLEY TIRE FIRE Total Metals September

Element	Modesto	LA - N.				We	stley-Livi	ngston			
	Sept. Avg '96- '98	Main Annual Avg	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30
Aluminum	2750	1237									4377
Silicon	7500	3313									10475
Phosphorus	100	58									148
Sulfur	523	1203									1100
Chlorine	439	1666									216
Potassium	875	514									1019
Calcium	1157	1141									1296
Titanium	175	108									184
Vanadium	<10	<10			,						17
Chromium	5	6									6
Manganese	38	21									43
Iron	1738	1316									1893
Cobalt	<16	<16									<16
Nickel	3	5									4
Copper	28	34									8
Zinc	33	75	55	50	49	72	42	21			206
Arsenic	<3	<3									5
Selenium	<2	<2									4
Bromine	4	8									19
Rubidium	4	2									3
Strontium	17	16									12
Yttrium	<2	<2									<2
Zirconium	4	5									<2
Molybdenum	<4	<4									<4
Tin	<4	5	1								12
Antimony	<5	<5									<5
Barium	45	62									<25
Mercury	<3	<3									<3
Lead	6	19					<u> </u>				9
Uranium	<2	<2		1						1	<2

•

WESTLEY TIRE FIRE Total Metals September

Element	Modesto	LA - N.			Grayson					I-5/Howard	đ	
	Sept. Avg '96- '98	Main Annual Avg	9/26	9/27	9/28	9/29	9/30	9/26	9/27	9/28	9/29	9/30
Aluminum	2750	1237	7471	1056	10837	4070	4194	4435	5342	5198	4686	3480
Silicon	7500	3313	18464	2554	25805	9735	10273	12762	15579	11996	12608	9576
Phosphorus	100	58	144	21	233	93	129	87	123	164	118	75
Sulfur	523	1203	263	48	535	369	963	171	471	509	666	861
Chlorine	439	1666	380	59	303	308	156	353	327	342	152	123
Potassium	875	514	1362	190	2039	812	927	1040	1058	1056	1013	796
Calcium	1157	1141	1340	182	1793	954	1046	1017	1267	1241	1283	1069
Titanium	175	108	310	45	413	182	157	180	188	213	173	129
Vanadium	<10	<10	<10	<10	19	28	<10	11	<10	11	12	10
Chromium	5	6	10	<2	16	11	8	9	9	8	7	5
Manganese	38	21	89	15	121	53	43	56	70	57	59	45
Iron	1738	1316	3384	436	4519	1691	1818	2030	2465	2241	2087	1535
Cobalt	<16	<16	<16	<16	1	<16	<16	<16	<16	0	<16	<16
Nickel	3	5	10	<2	11	10	5	6	6	7	4	3
Copper	28	34	4	4	18	28	10	5	<2	9	6	8
Zinc	33	75	54	4	199	27	217	67	280	109	149	197
Arsenic	<3	<3	<3	<3	4	<3	4	4	<3	6	<3	7
Selenium	<2	<2	<2	2	<2	7	3	4	<2	2	2	3
Bromine	4	8	4	<2	_11	<2	18	5	16	14	15	17
Rubidium	4	2	7	<2	11	<2	3	3	4	5	5	3
Strontium	17	16	13	3	23	12	9	8	11	16	10	9
Yttrium	<2	<2	<2	<2	3	3	<2	2	<2	<2	<2	<2
Zirconium	4	5	10	<2	9	5	2	4	4	5	6	4
Molybdenum	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Tin	<4	5	<4	6	7	<4	5	<4	<4	6	<4	13
Antimony	<5	<5	<5	<5	6	<5	<5	<5	<5	<5	<5	<5
Barium	45	62	76	<25	117	<25 .	59	<25	60	26	42	30
Mercury	<3	<3	4	<3	4	11	<3	8	<3	<3	<3	<3
Lead	6	19	6	<4	8	25	<4	<4	6	<4	6	<4
Uranium	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2

WESTLEY TIRE FIRE Total Metals September

Element	Modesto	LA - N.		New	man				Vernali	s	
	Sept. Avg '96- '98	Main Annual Avg	9/27	9/28	9/29	9/30	9/26	9/27	9/28	9/29	9/30
Aluminum	2750	1237	956	3967	3614	4906	4130	1222	3447	5447	2593
Silicon	7500	3313	2460	10454	9012	11585	10468	3102	8148	13137	6529
Phosphorus	100	58	23	106	105	134	88	32	97	132	73
Sulfur	523	1203	100	527	566	833	223	136	440	683	874
Chlorine	439	1666	124	238	152	190	509	276	383	1020	235
Potassium	875	514	213	741	839	1159	828	272	671	963	618
Calcium	1157	1141	234	1020	1003	1202	839	285	983	1445	776
Titanium	175	108	42	152	145	196	188	46	145	162	99
Vanadium	<10	<10	<10	12	<10	11	<10	<10	<10	<10	12
Chromium	5.	6	<2	6	7	7	8	<2	3	6	4
Manganese	38	21	13	51	43	49	48	14	46	52	26
Iron	1738	1316	417	1765	1604	2172	1996	489	1520	2196	1156
Cobalt	<16	<16	<16	2	<16	<16	<16	<16	3	<16	<16
Nickel	3	5	2	5	3	6	7	<2	3	<2	3
Copper	28	34	4	7	5	9	4	<2	6	<2	8
Zinc	33	75	73	307	73	64	43	11	91	35	242
Arsenic	<3	<3	<3	<3	3	<3	<3	<3	3	3	5
Selenium	<2	<2	<2	3	<2	3	2	<2	<2	<2	4
Bromine	4	8	4	15	10	13	5	<2	6	<2	23
Rubidium	4	2	<2	3	4	6	4	2	3	11	<2
Strontium	17	16	<2	9	9	14	9	3	9	15	8
Yttrium	<2	<2	<2	<2	<2	3	<2	<2	<2	11	<2
Zirconium	4	5	<2	<2	5	6	4	2	<2	10	2
Molybdenum	<4	<4	<4	<4	<4	<4	<4	<4	<4	11	<4
Tin	<4	5	<4	<4	<4	5	<4	<4	5	<4	10
Antimony	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Barium	45	62	<25	38	34	35	25	<25	<25	101	<25
Mercury	<3	<3	4	3	<3	<3	<3	<3	<3	11	<3
Lead	6	19	<4	5	<4	12	<4	<4	<4	<4	6
Uranium	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2

•

.

WESTLEY TIRE FIRE

Total Metals

October

Element	Modesto	LA - N.			Grayson				1	-5/Howard	ł	
	Sept. Avg '96- '98	Main Annual Avg	10/01	10/02	10/03	10/04	10/05	10/01	10/02	10/03	10/04	10/05
Aluminum	2750	1237	2690	1882	1315	1403	1395	2725	1710	1586	1921	1327
Silicon	7500	3313	7767	4694	3415	3390	3418	8170	4509	4705	5280	4142
Phosphorus	100	58	31	84	49	38	43	65	50	39	38	24
Sulfur	523	1203	883	1244	891	779	391	1018	1285	1422	857	288
Chlorine	439	1666	705	982	625	1636	600	266	968	693	1405	422
Potassium	875	514	690	548	392	371	315	663	503	464	481	282
Calcium	1157	1141	706	679	422	447	362	878	602	595	632	452
Titanium	175	108	32	76	57	52	59	103	80	65	71	34
Vanadium	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chromium	5	6	23	<2	3	3	3	3	<2	2	3	<2
Manganese	38	21	20	19	16	15	17	35	31	21	25	16
Iron	1738	1316	1356	870	647	644	648	1311	799	791	859	618
Cobalt	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
Nickel	3	5	<2	3	3	2	2	3	3	3	2	<2
Copper	28	34	19	2	<2	4	7	6	<2	5	5	2
Zinc	33	75	43	34	22	46	11	258	190	173	125	24
Arsenic	<3	<3	24	<3	<3	<3	4	<3	6	5	<3	4
Selenium	<2	<2	18	<2	<2	4	3	2	<2	5	6	4
Bromine	4	8	<2	10	5	8	4	16	15	18	13	<2
Rubidium	4	2	<2	<2	<2	<2	3	2	2	<2	3	<2
Strontium	17	16	13	6	2	5	4	7	6	6	8	4
Yttrium	<2	<2	<2	<2	<2	<2	<2	<2	3	<2	<2	<2
Zirconium	4	5	<2	<2	<2	<2	<2	4	7	3	3	2
Molybdenum	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Tin	<4	5	33	<4	<4	<4	4	<4	<4	<4	4	<4
Antimony	<5	<5	101	<5	<5	<5	<5	<5	<5	6	<5	<5
Barium	45	62	395	<25	29	<25	<25	34	<25	<25	<25	40
Mercury	<3	<3	40	<3	<3	<3	5	<3	<3	<3	4	7
Lead	6	19	<4	<4	<4	<4	<4	5	<4	<4	5	<4
Uranium	<2	<2	<2	<2	2	<2	<2	<2	<2	<2	<2	<2

.

Element	Modesto	LA - N.			Newman					Vernalis		
	Sept. Avg '96- '98	Main Annual Avg	10/01	10/02	10/03	10/04	10/05	10/01	10/02	10/03	10/04	10/05
Aluminum	2750	1237	2855	2515	1017	1519	1371	2528	1489	529	1094	1036
Silicon	7500	3313	7385	5955	2429	3861	3295	6295	3572	1273	2725	2359
Phosphorus	100	58	117	95	40	57	48	58	45	<15	29	22
Sulfur	523	1203	1017	1277	782	850	453	922	1167	589	789	291
Chlorine	439	1666	286	894	409	1288	672	330	716	330	1673	471
Potassium	875	514	703	679	302	468	351	633	411	173	306	237
Calcium	1157	1141	828	695	290	556	410	784	461	202	440	249
Titanium	175	108	136	93	39	6 6	65	99	55	21	35	32
Vanadium	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	<10	<10
Chromium	5	6	8	4	4	3	4	2	3	<2	<2	4
Manganese	38	21	27	26	10	17	16	27	18	6	12	12
Iron	1738	1316	1234	1121	454	708	611	1204	688	232	519	473
Cobalt	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
Nickel	3	5	<2	4	3	2	<2	5	<2	<2	2	<2
Copper	28	34	24	3	3	4	4	5	3	2	3	4
Zinc	33	75	52	38	31	54	24	63	41	24	44	13
Arsenic	<3	<3	<3	3	<3	<3	5	<3	<3	<3	<3	<3
Selenium	<2	<2	7	3	<2	2	<2	3	<2	<2	7	<2
Bromine	4	8	18	13	8	10	5	10	11	4	9	3
Rubidium	4	2	<2	<2	<2	3	<2	2	<2	<2	<2	<2
Strontium	17	16	5	7	5	7	4	7	4	<2	5	5
Yttrium	<2	<2	10	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zirconium	4	5	<2	3	3	3	<2	3	5	<2	3	<2
Molybdenum	<4	<4	9	<4	<4	<4	<4	<4	<4	<4	<4	<4
Tin	<4	5	6	4	<4	<4	5	8	<4	8	<4	7
Antimony	<5	<5	11	<5	<5	<5	<5	5	<5	9	<5	<5
Barium	45	62	<25	57	25	<25	<25	30	<25	<25	<25	<25
Mercury	<3	<3	<3	<3	<3	<3	5	<3	<3	<3	<3	<3
Lead	6	19	5	<4	<4	<4	<4	8	4	<4	<4	<4

•

Element	Modesto	LA - N.		Westley – Livingston									
	Sept. Avg '96- '98	Main Annual Avg	10/01	10/02	10/03	10/04	10/05	10/06	10/07	10/08	10/09	10/10	10/11
Aluminum	2750	1237	2763	1840	1674	2138	1249	1586	4465	3133	2740	2883	2001
Silicon	7500	3313	6819	4822	4091	5350	3151	3911	11181	7329	6564	6912	4883
Phosphorus	100	58	88	72	54	18	46	31	84	72	67	89	51
Sulfur	523	1203	1007	1228	1302	2052	386	327	199	612	647	859	807
Chlorine	439	1666	335	842	680	942	756	435	155	173	220	165	134
Potassium	875	514	646	514	454	588	311	374	883	663	561	619	434
Calcium	1157	1141	749	550	485	742	382	392	829	619	601	668	583
Titanium	175	108	99	89	71	<10	55	74	185	131	101	117	79
Vanadium	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chromium	5	6	4	<2	2	10	<2	<2	9	7	<2	2	<2
Manganese	38	21	30	22	20	27	16	20	49	31	25	28	21
Iron	1738	1316	1221	896	782	994	595	707	2060	1305	1159	1255	939
Cobalt	<16	<16	<16	<16	<16	17	<16	<16	<16	<16	<16	<16	<16
Nickel	3	5	3	4	2	3	3	<2	6	4	3	4	3
Copper	28	34	7	5	2	55	4	3	6	3	4	6	4
Zinc	33	75	214	51	50	473	9	8	70	301	141	159	31
Arsenic	<3	<3	<3	<3	<3	34	4	<3	7	4	6	3	4
Selenium	<2	<2	5	3	<2	42	3	<2	<2	3	<2	4	2
Bromine	4	8	18	12	11	43	4	4	5	13	11	15	7
Rubidium	4	2	<2	<2	2	<2	2	<2	4	<2	<2	3	<2
Strontium	17	16	5	5	5	<2	5	3	10	7	6	9	5
Yttrium	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Molybdenum	<4	<4	<4	<4	<4	16	<4	<4	<4	<4	<4	<4	<4
Antimony	<5	<5	<5	<5	8	13	8	<5	<5	<5	<5	<5	10
Barium	45	62	48	<25	<25	337	<25	<25	48	<25	33	<25	32
Mercury	<3	<3	6	<3	<3	50	<3	<3	<3	<3	<3	<3	<3
Lead	6	19	9	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Uranium	<2	<2	<2	<2	<2	3	<2	<2	<2	<2	5	<2	<2

Element	Modesto	LA - N.	N. Grayson						-	5/Howar	d			
-	Sept. Avg '96- '98	Main Annual Avg	10/06	10/07	10/08	10/09	10/10	10/11	10/06	10/07	10/0 8	10/09	10/1 0	10/1 1
Aluminum	2750	1237	1718	2434	5590	3997	4334	3691	3397	4551	3441	2727	2953	2990
Silicon	7500	3313	4281	6010	13638	9778	10441	8941	10233	12506	9226	7113	7860	8513
Phosphorus	100	58	17	73	141	124	123	85	57	82	80	53	74	69
Sulfur	523	1203	374	167	800	818	1073	927	542	410	610	584	945	811
Chlorine	439	1666	811	168	335	328	293	205	758	284	186	112	152	163
Potassium	875	514	394	537	1168	890	911	780	640	931	715	529	631	605
Calcium	1157	1141	360	544	1160	914	1008	899	854	1006	796	705	820	888
Titanium	175	108	86	119	236	146	165	152	115	171	122	85	122	107
Vanadium	<10	<10	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	<10	<10
Chromium	5	6	7	5	7	5	5	3	. 3	7	6	3	6	3
Manganese	38	21	22	26	61	39	48	40	43	54	42	. 27	33	34
on	1738	1316	800	1113	2543	1782	1908	1697	1481	2033	1568	1149	1262	1375
Cobalt	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
Nickel	3	5	2	<2	6	4	5	5	5	6	5	2	3	<2
Copper	28	34	<2	6	4	5	7	<2	5	8	4	<2	5	<2
Zinc	33	75	12	18	252	134	221	32	746	392	379	111	252	171
Arsenic	<3	<3	3	<3	4	4	8	<3	<3	<3	<3	3	<3	<3
Selenium	<2	<2	4	<2	2	2	5	<2	<2	<2	5	<2	3	2
Bromine	4	8	<2	4	15	12	20	9	28	16	16	9	17	13
Rubidium	4	2	<2	· 2	5	5	4	3	2	4	2	3	<2	3
Strontium	17	16	2	5	13	11	11	8	6	10	5	7	7	9
Yttrium	<2	<2	2	<2	<2	3	<2	<2	<2	<2	<2	2	3	<2
Molybdenum	<4	<4	<4	<4	<4	<4	<4	4	<4	<4	<4	<4	<4	<4
Antimony	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	8	<5	<5	<5
Barium	45	62	<25	<25	62	39	43	29	38	31	56	58	<25	32
Mercury	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
' ead	6	19	<4	4	<4	<4	<4	<4	10	8	6	<4	10	<4
Jranium	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2

•

Element	Modesto	LA - N.			New	man					Vern	alis		
	Sept. Avg '96- '98	Main Annual Avg	10/06	10/07	10/08	10/09	10/10	10/1 1	10/06	10/07	10/08	10/09	10/1 0	10/1 1
Aluminum	2750	1237	2348	3629	3365	2494	2803	3695	1054	1439	3043	2734	3048	4027
Silicon	7500	3313	5469	9233	8065	6361	6716	8924	2824	3740	7579	6903	7132	9796
Phosphorus	100	58	60	122	122	306	118	101	29	37	75	67	91	105
Sulfur	523	1203	498	281	708	773	756	937	288	113	504	708	946	1017
Chlorine	439	1666	676	184	149	237	227	223	379	91	129	166	139	253
Potassium	875	514	547	946	911	684	720	864	282	368	694	572	697	827
Calcium	1157	1141	491	1034	832	701	868	965	296	297	662	674	725	1045
Titanium	175	108	88	147	116	100	122	162	35	51	131	114	110	142
Vanadium	<10	<10	<10	<10	<10	<10	<10	13	<10	<10	.12	<10	<10	11
Chromium	5	6	4	7	5	6	3	4	<2	<2	7	8	4	6
Inganese	38	21	25	36	34	28	26	36	12	16	33	28	28	42
Iron	1738	1316	1005	1646	1479	1072	1154	1657	481	666	1365	1192	1333	1935
Cobalt	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
Nickel	3	5	5	. 4	3	2	2	5	<2	<2	3	2	4	4
Copper	28	34	13	6	9	<2	<2	4	<2	• 6	8	3	9	5
Zinc	33	75	43	22	56	78	41	33	12	57	146	87	162	94
Arsenic	<3	<3	<3	<3	<3	4	<3	<3	<3	<3	<3	5	<3	4
Selenium	<2	<2	<2	2	3	<2	<2	<2	4	<2	6	<2	4	<2
Bromine	4	8	<2	5	8	10	11	11	3	5	10	8	16	15
Rubidium	4	2	5	5	4	4	<2	3	<2	<2	3	4	5	5
Strontium	17	16	7	12	9	6	9	14	5	17	8	7	7	11
Yttrium	<2	<2 ·	<2	<2	<2	5	2	3 ·	<2	<2	<2	<2	<2	<2
Antimony	<5	<5	<5	8	<5	<5	12	<5	<5	<5	<5	<5	<5	<5
Barium	45	62	58	44	47	34	<25	<25	<25	33	<25	<25	35	49
Mercury	<3	<3	15	<3	<3	<3	<3	<3	<3	6	5	<3	5	<3
' ead	6	19	10	<4	<4	<4	5	<4	<4	4	7	<4	11	<4
Jranium	<2	<2	<2	<2	<2	<2	<2	<2	4	<2	<2	<2	<2	<2

Element	Modesto	esto LA - N. ot. Main					West	ley – Livin	igston				
	Sept. Avg '96- '98	Main Annual Avg	10/12	10/13	10/14	10/15	10/16	10/17	10/18	10/19	10/20	10/21	10/22
Aluminum	2750	1237	NA	3522			4134	2547	4026	4794			
Silicon	7500	3313	NA	8361			9938	6087	9824	11548			
Phosphorus	100	58	NA	98			117	55	110	113			
Sulfur	523	1203	NA	738			395	374	788	926			
Chlorine	439	1666	NA	175			353	216	202	174			
Potassium	875	514	NA	717			1242	680	1040	1200			
Calcium	1157	1141	NA	856			1184	660	982	1127			
Titanium	175	108	NA	137			127	96	152	189			
Vanadium	<10	<10	NA	12			<10	<10	11	11			
Chromium	5	6	NA	4			5	5	5	6			
Manganese	38	21	NA	38			67	33	47	55			
Iron	1738	1316	NA	1493			1685	1056	1727	2099			
Cobalt	<16	<16	NA	<16			<16	<16	<16	<16			
Nickel	3	5	NA	4			4	3	4	5			
Copper	28	34	NA	7			<2	4	5	4			
Zinc	33	75	NA	80			105	95	118	107			
Arsenic	<3	<3	NA	<3			<3	<3	4	6			
Selenium	<2	<2	NA	4			<2	2	3	2			
Bromine	4	8	NA	8			8	9	13	12			
Rubidium	4	2	NA	2			3	<2	2	4			
Strontium	17	16	NA	5			<3	7	9	11			
Yttrium	<2	<2	NA	<2			<2	2	<2	<2			
Molybdenum	<4	<4	NA	<4			<4	<4	<4	<4			
Antimony	<5	<5	NA	<5			8	<5	<5	<5			
Barium	45	62	NA	<25			88	28	<25	43			
Mercury	<3	<3	NA	<3			<3	<3	<3	<3			
Lead	6	19	NA	4			13	8	<4	<4			
Uranium	<2	<2	NA	<2			<2	<2	<2	<2			

.

25

٠

.

Element	Modesto	LA - N.			Gra	yson				I-	5/Howar	d		
	Sept. Avg '96- '98	Annual Avg	10/12	10/13	10/14	10/15	10/16	10/17	10/12	10/13	10/1 4	10/15	10/1 6	10/1 7
Aluminum	2750	1237	5005	4059			5713	7413	4639	5222			3802	1680
Silicon	7500	3313	12370	10139	· · ·		13622	17822	12880	15063			9066	4449
Phosphorus	100	58	116	126			166	139	87	98			133	65
Sulfur	523	1203	800	787		<u> </u>	479	533	707	839			995	470
Chlorine	439	1666	230	185			481	337	134	108			851	158
Potassium	875	514	1013	938			1558	1573	912	1037			1382	590
Calcium	1157	1141	1188	1169			1482	1466	1170	1434			1380	648
Titanium	175	108	190	161			203	296	176	192			129	70
Vanadium	<10	<10	<10	16			<10	19	<10	11			<10	<10
Chromium	- 5	6	7	3			9	6	7	10			6	3
Manganese	38	21	52	49			94	93	49	66			81	27
່ວກ	1738	1316	2191	1793			2429	3279	2008	2410			1587	717
Cobalt	<16	<16	<16	<16			<16	<16	<16	<16			<16	<16
Nickel	3	5	6	5			5	8	5	6			8	3
Copper	28	34	4	6			<2	10	4	9			9	7
Zinc	33	75	162	44			124	168	159	111			1063	96
Arsenic	<3	<3	4	4			<3	5	4	<3			4	<3
Selenium	<2	<2	<2	3			<2	3	<2	5			3	4
Bromine	4	8	12	10			10	15	12	12			44	9
Rubidium	4	2	5	<2			4	9	4	4			3	<2
Strontium	17	16	12	9			16	19	11	12			9	6
Yttrium	<2	<2	<2	<2			<2	<2	<2	3			<2	<2
Molybdenum	<4	<4	<4	<4			<4	<4	<4	<4			<4	<4
Antimony	<5	<5	<5	<5			<5	<5	<5	<5		,	<5	<5
Barium	45	62	39	<25			83	66	37	58			90	<25
Mercury	<3	<3	<3	<3			<3	5	<3	<3			<3	6
?ad	6	19	<4	8			16	5	<4	5			29	<4
Uranium	<2	<2	<2	<2			<2	<2	<2	<2			<2	<2

Element	Modesto	LA - N.	A - N. Newman Main Inpual 10/12 10/13 10/14 10/15 10/16 10/1								Vernalis					
	Sept. Avg '96- '98	Main Annual Avg	10/12	10/13	10/14	10/15	10/16	10/1 7	10/12	10/13	10/14	10/1 5	10/16	10/1 7		
Aluminum	2750	1237	4974	5636			8191	2938	3122	3436			6041	1845		
Silicon	7500	3313	11665	13942			19833	6875	7963	8721			14560	4581		
Phosphorus	100	58	146	169			247	93	65	80			171	76		
Sulfur	523	1203	811	849			673	502	596	828			463	461		
Chlorine	439	1666	382	319			599	392	88	87			440	124		
Potassium	875	514	1072	1277			2207	895	646	721			1634	608		
Calcium	1157	1141	1325	1422			2259	1033	733	858			1719	736		
Titanium	175	108	186	227			343	109	134	138			240	60		
Vanadium	<10	<10	<10	17			17	<10	14	16			<10	<10		
Chromium	5	6	11	7			16	6	2	3			9	3		
anganese	38	21	46	59			132	46	33	37			103	28		
Iron	1738	1316	2150	2497			3729	1223	1354	1564			2645	787		
Cobalt	<16	<16	<16	<16			<16	<16	<16	<16			<16	<16		
Nickel	3	5	5	7			12	4	3	3			7	<2		
Copper	28	34	4	7			11	6	<2	3			4	5		
Zinc	33	75	61	45			118	71	22	37			129	65		
Arsenic	<3	<3	5	<3			5	4	<3	3			<3	<3		
Selenium	<2	<2	2	<2			3	3	2	<2			<2	<2		
Bromine	4	8	17	11			14	13	8	6			10	10		
Rubidium	4	2	5	5			9	3	4	3			6	2		
Strontium	17	16	16	15	- · ·		21	9	8	7			13	6		
Yttrium	<2	<2	3	<2			<2	<2	<2	<2			<2	<2		
Molybdenum	<4	<4	<4	<4			<4	<4	<4	<4			<4	<4		
Barium	45	62	56	42			82	39	<25	<25			85	33		
Mercury	<3	<3	<3	<3	•		<3	4	<3	<3			<3	<3		
' ead	6	19	6	6			9	4	<4	<4			14	6		
Uranium	<2	<2	3	<2			<2	<2	<2	<2			<2	<2		

•

Element	Modesto	LA - N.	Grayson						I-5/Howard					
	Avg '96- '98	Annual Avg	10/18	10/19	10/20	10/21	10/22	10/23	10/18	10/19	10/2 0	10/21	10/2 2	10/2 3
Aluminum	2750	1237	6190	20371					3900	3869				+
Silicon	7500	3313	15291	48446					11272	10154				<u> </u>
Phosphorus	100	58	161	263					84	81				
Sulfur	523	1203	853	991					739	940				<u> </u>
Chlorine	439	1666	312	337					124	135				
Potassium	875	514	1439	3960					1011	1025				
Calcium	1157	1141	1342	2987					1208	1072				
Titanium	175	108	232	913					134	132				
Vanadium	<10	<10	13	41					<10	<10				
Chromium	5	6	8	26			-		8	6				
Manganese	38	21	76	259					56	49				
Sn	1738	1316	2726	10089					1806	1658				
Cobalt	<16	<16	<16	18					<16	<16				
Nickel	3	5	6	24					3	3				
Copper	28	34	8	16					4	6				
Zinc	33	75	160	273					99	135				
Arsenic	<3	<3	4	7					4	8				
Selenium	<2	<2	4	6					3	4				
Bromine	4	8	18	25					9	16				
Rubidium	4	2	6	21					<2	2				
Strontium	17	16	16	49					8	11				
Yttrium	<2	<2	<2	8					<2	5				
Molybdenum	<4	<4	<4	<4					<4	5				
Antimony	<5	<5	<5	<5					<5	<5				
Barium	45	62	58	209					91	35				
Mercury	<3	<3	<3	6			<u></u>		<3	<3				
' ead	6	19	4	12					<4	<4				
Jranium	<2	<2	<2	<2					<2	<2				

Element	Modesto	LA - N.	LA - N. Newman Main Annuai 10/18 10/19 10/20 10/21 10/22 10/2 1								Vern	alis		
	Sept. Avg '96- '98	Main Annual Avg	10/18	10/19	10/20	10/21	10/22	10/2 3	10/18	10/19	10/20	10/2 1	10/22	10/2 3
Aluminum	2750	1237	4627	5593					4754	4555				
Silicon	7500	3313	11239	12919					11651	10971				
Phosphorus	100	58	146	142					135	88				
Sulfur	523	1203	870	982					707	854				
Chlorine	439	1666	428	302					116	113				
Potassium	875	514	1416	1455					1212	1081				-
Calcium	1157	1141	1342	1368					1259	1042				
Titanium	175	108	182	205					172	160				
Vanadium	<10	<10	<10	10					12	<10				
Chromium	5	6	7	9					5	5				
Manganese	38	21	45	58					58	50				
n	1738	1316	1978	2362					2066	2015				
Cobalt	<16	<16	<16	<16					<16	<16				
Nickel	3	5	5	5					4	4				
Copper	28	34	9	8					3	7				
Zinc	33	75	70	60					84	64				
Arsenic	<3	<3	<3	<3					5	5				
Selenium	<2	<2	4	4					<2	5				
Bromine	4	8	23	25					9	11				
Rubidium	4	2	4	6					6	4	-			
Strontium	17	16	12	16					12	12				
Yttrium	<2	<2	<2	3					2	<2				
Molybdenum	<4	<4	<4	<4					<4	<4				
Antimony	<5	<5	<5	<5					7	<5				
Barium	45	62	27	63					<25	63				
Mercury	<3	<3	<3	<3					<3	<3				
Lead	6	19	7	8					<4	<4				
anium	<2	<2	<2	2					<2	<2				

.

APPENDIX 2 Westley Tire Fire Monitoring Activities

The following document describes ongoing monitoring efforts by the Air Resources Board Monitoring and Laboratory Division for the tire fire in Westley, California. Monitoring activities are described on a site by site basis and list instruments and analyses being performed and when sampling began at each monitoring location.

Westley-Livingston: This monitoring station is located adjacent to seasonal worker housing and a daycare center on Livingston Circle in Westley, CA. The site is approximately 4 to 5 miles due southeast of the tire fire. Currently the following instruments are operating at the site: Surface meteorology (wind speed/direction, outside temperature), an aethalometer for continuous black carbon analysis, a carbon monoxide (CO) analyzer, a Xontech 910A toxics sampler (collects 24 hour samples into 6L stainless steel canisters and are analyzed for benzene and 1,3-butadiene), a Tapered Element Oscillating Microbalance (TEOM) for continuous PM10 mass, and two portable battery operated MiniVol particulate samplers collecting 24 hour PM10 samples (one teflon filter for total PM10 mass and total metals (30 different elements analyzed); and one quartz filter for PAH and total carbon analyses). Sampling at this site began on September 22.

Westley-McCracken: This monitoring station is located at a Super 8 Motel on McCracken Road near the I-5 freeway in Westley, CA. The site is approximately _ to 1 mile due southeast of the tire fire. Currently the following instruments are operating at the Super 8 Motel: Surface meteorology (wind speed/direction, outside temperature), an aethalometer for continuous black carbon analysis, and a TEOM for continuous PM10 mass. Sampling at this site began on October 2.

Westley-Howard Road: This monitoring site is located near a McDonald's restaurant on Howard Road and the I-5 freeway in Westley, CA.. Currently operating at this location is one portable battery operated MiniVol particulate sampler collecting 24 hour PM10 samples (one teflon filter for total PM10 mass and total metals). The sampler is attached to a utility pole and is approximately 1 mile due southeast of the tire fire. Sampling at this site began on September 26.

Vernalis: This monitoring site is located in the parking lot of an unoccupied warehouse on Welty Road in Vernalis, CA. Currently operating at this location is one portable battery operated MiniVol particulate sampler collecting 24 hour PM10 samples (one teflon filter for total PM10 mass and total metals). The sampler is attached to a utility pole and is approximately 15 miles north/northeast of the tire fire. Sampling at this site began on September 26.

Grayson: This monitoring site is located at the intersection of Minnie and River Roads in Grayson, CA. Currently operating at this location is one portable battery operated MiniVol particulate sampler collecting 24 hour PM10 samples (one teflon filter for total PM10 mass and total metals). The sampler is attached to a utility pole and is approximately 7-10 miles east of the tire fire. Sampling at this site began on September 26.

Newman: This monitoring site is located at the Newman library on Kern street in Newman, CA. Currently operating at this location is one portable battery operated MiniVol particulate sampler collecting 24 hour PM10 samples (one teflon filter for total PM10 mass and total metals). The sampler is attached to a utility pole in the parking lot of the Newman library, and is approximately 30 miles south/southeast of the tire fire. Sampling at this site began on September 27.

Patterson: This monitoring site is located at the Patterson High School on 7th Avenue in Patterson, CA. Currently operating at this location is a High Volume Sampler with Size Selective Inlet collecting 24-hour PM10 samples for total PM10 mass, PAH, and total carbon analysis. The site is approximately 20 miles southeast of the tire fire. Sampling at this site began on October 6.

APPENDIX 3 MLD Analysis of the Pyrolytic Oil Headspace

Project:	WESTLEY TIRE
Sample ID:	101499-01A
Sampling Date:	10/25/99
Analysis Date:	10/25/99
Report Date:	10/29/99
GC Number:	GC#4

CAS Number	Compound	Concentration (ppbC)
-	-	-
00074-98-6	propane	16
00075-28-5	methylpropane	22
00106-97-8	butane	19
00115-11-7	2-methylpropene	93
00513-35-9	2-methyl-2-butene	24
00109-66-0	pentane	20
00071-43-2	benzene	50
10574-36-4	3-methyl-cis-2-hexene	16
00565-75-3	2,3,4-trimethylpentane	16
00108-88-3	toluene	43
00100-41-4	ethylbenzene	17
	Total	336

è

APPENDIX 3 MLD Analysis of the Pyrolytic Oil Headspace (cont.)

Project:	WESTLEY TIRE
Sample ID:	101499-01A
Sampling Date:	10/25/99
Analysis Date:	10/25/99
Report Date:	10/29/99
GC Number:	GC#4

CAS Number	Hydrocarbon	Volume Percent
-	-	-
00074-98-6	propane	7.78
00115-07-1	propene	0.00
00075-28-5	methylpropane	8.03
00106-97-8	butane	6.93
00115-11-7	2-methylpropene	33.93
00513-35-9	2-methyl-2-butene	7.01
00109-66-0	pentane	5.84
00071-43-2	benzene	12.16
10574-36-4	3-methyl-cis-2-hexene	3.34
00565-75-3	2,3,4-trimethylpentane	2.92
00108-88-3	toluene	8.97
00100-41-4	ethylbenzene	3.10

Total

.

APPENDIX 3

MLD Analysis of the Pyrolytic Oil Headspace (cont.)

Project:	WESTLEY
	TIRE
Sample ID:	101499-01A
Sampling Date:	10/25/99
Analysis	10/25/99
Date:	
Report Date:	10/29/99
GC Number:	GC#4

CAS Number	Hydrocarbon	Mass Percent
-	-	-
00074-98-6	propane	5.05
00075-28-5	methylpropane	6.87
00106-97-8	butane	5.93
00115-11-7	2-methylpropene	28.02
00513-35-9	2-methyl-2-butene	7.23
00109-66-0	pentane	6.20
00071-43-2	benzene	13.98
10574-36-4	3-methyl-cis-2-hexene	4.82
00565-75-3	2,3,4-trimethylpentane	4.91
00108-88-3	toluene	12.16
00100-41-4	ethylbenzene	4.85

Total

100.00